Can One QO Rule Them All?

Presenter: Yuanyuan Tian e
Gray Systems Lab (GSL), Microsoft

GSL: Rana Alotaibi*, Stefan Grafberger*, Nicolas Bruno, Brian Kroth, Sergiy Matusevych, Ashvin Agrawal, Carlo Curino
Fabric DW: Jesus Camacho-Rodriguez, Cesar Galindo-Legaria, Milind Joshi, Milan Potocnik, Beysim Sezgin, Xiaoyu Li
Fabric Spark: Mahesh Behera, Ashit Gosalia ——

Industry Trends
.

Microsoft Fabric °’2*<';3')’e’
 Shared Data on Lake -
 Shared Compute Resource Execution

(Runtime)

 Shared Governance Experience

Storage

Industry Trends
.

: . imi

Microsoft Fabric o‘zg’g)’e’

 Shared Data on Lake

 Shared Compute Resource Execution
. (Runtime)

* Shared Governance Experience

Storage

Industry Trends

Microsoft Fabric

 Shared Data on Lake

* Shared Compute Resource
 Shared Governance Experience

Frontend

Query
Optimizer
(QO)

Execution
(Runtime)

One Lake ‘

‘ Architecture: Monolithic © Composable

Storage

* Cloud DB: separation of storage from compute
 Open standards

* Parquet, Arrow, Substrait
* OSS system-building libraries

 (Calcite, Orca, Velox, Datafusion

Industry Trends

Microsoft Fabric

* Shared Data on Lake

* Shared Compute Resource Execution
(Runtime)

* Shared Governance Experience

Frontend

Optimizer QO as a Service
(QO)

One Lake ‘

‘ Architecture: Monolithic © Composable

Storage

* Cloud DB: separation of storage from compute
 Open standards

* Parquet, Arrow, Substrait
* OSS system-building libraries

 (Calcite, Orca, Velox, Datafusion

QO Status Quo: Reinventing Wheels

A proliferation of analytical engines with their own QOs following similar patterns

 Same relational algebra, similar search spaces, and same stages

Parsing/

Algebrization

» AST - algrebraic tree
* Name resolution

* Type inference

N\

~

/

Simplification/
Normalization

* |teratively apply
transformation rules
* E.g. filter push-down,

constantfolding,

decorrelation, etc

N

~

/

Exploration
(CBO)

~

* Cost-based exploration
e search space
* enumeration strategy

* DP or Cascades

* cost model

N /

Post-
optimization

* Peephole transformations

on the final plan

N

/

QOaaS

- Independent QO service interacting with multiple
engines over RPC

Focus: for analytical engines in a unified Lakehouse
ecosystem, e.g. Microsoft Fabric

Innovation speed

Engineering
efficiency

New engine time-
to-market

Steps Towards QOaaS SQL Server

0]0)

* Building on our own experience
* Developing Calcite SCOPE QO
* Evolving Cascades framework within Microsoft

* Initial focus
* Two engines: DW and Spark on Fabric Ecosystem Synapse

. . DW QO
* Adapting UQO (Fabric DW QO) to QOaa$S

* Key Challenges:
* CH1: Exchanging plans in and out of QO Fabric DW

. .) QO (UQO)

* CH2: Adapting UQO for different engines

* CH3: Adjusting the cost model

QO Evolution in Microsoft

l| CHA1: Standardizing Plan Specification

* Substrait: open-source, cross-language plan specification for relational algebra

e Various serialization formats :
oo . Substrait
* Extensibility for custom operations

* Ecosystem for libraries and toolings

 Making Substrait as the cross-engine plan specification on Fabric
* Ongoing collaborative effort across GSL, DW, Spark, and Power Bl
* Current coverage: TPC-H, TPC-DS, internal benchmarking workloads

CH2: Can UQO optimize Spark Queries?

Spark QO UQO
e Mostly non-CBO e Full-stack Cascades framework with
e CBO only applies to join ordering and 255 CBO rules
broadcast-vs-shuffle join decision e Sophisticated cost model

Naive replacement won’t work!

* Physical Operator Gaps * Feature Support Disparities
 Some Fabric DW physical operators are UQO cannot fully exploit Spark-specific
unsupported in Spark features

« Example: merge/hash-based union Example: Hive-style partitioning

A Simple QOaaS Prototype

Spark Query
Spark QO* « UQO*
— Substrait
+ Initial unoptimized * Notgenerating unsupported operatorsin Spark
(Subset of rules logical plan o Sp ark QO*
further optimized
logical plan uQo* * Adding Spark specific optimization rules lacking in UQO
wiwo physical hints Subsat of rules 4=
5 Substrait @
physicatPlarning e eyt : - SPERERSS
w
Optimized
phy";h::lz:m“ physical hints % E Q0aaS-v1 logical optimization further optimization + physical
aaS-v . .
C 2 E implementation
- _rf ‘ fg logical + physical further optimization + physical
QOaaS-v2 optimization implementation based on hints

Onelake from UQO*

Performance Study

MSSales Workload TPC-H SF1000 (1TB)
» 627 tables on OnelLake (5TB, delta parquet)
* Highlytemplatized queries, join heavy

QOaaS-v2 is comparable to SparkQO
* Average diff <6%
Q5is 1.5x slow

NORMAILIZED TIME
©w
[]

* Not fully utilizing Bloom filters

5Joins 10Joins 15Joins 20Joins 25Joins 30Joins 35Joins 40 Joins

@ Spark QO QOaaS-v1 MW QOaaS-v2

Takeaway Adding optimizations retroactively is suboptimal,
* UQO-based QOaaS looks promising! all optimization opportunities should be
e QOaas-v2 performs better than QOaaS-v1 explored!

CH3: Recalibrating and Tuning the Cost Model

60 parameters

* Afixed cost modelis unlikely to work for QOaaS

e 15t attempt: changing cost model without
rewrite

* Recalibrating and tuning constant parameters in
UQQO’s cost formula

e MLOS [1]: OSS ML-powered tuner

B BatchExecutionCost H CpuCost u ExchangeCost
m HashJoinCost m |0OCost m PredicateCost
» RowFacorCost m StartupCost

[11 MLOS. https://github.com/microsoft/MLOS

NORMALIZED TIME
© B N WA ON® ©O

Performance Study

MSSales Workload TPC-H
7 7 v 6
w5
7 B Z 7 £
7 o
Z g g % g A 7 gz
. é RN 2 7
1 e Anea um 7B
M D Vo 7m 7B D 7m0 7R com T R 7 im0 D 7 L YZm U
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Qi5 SF-10 SF-30 SF-100
7 Default Config H Tuned Config ¥l Defaul Config ® Tuned Config
Observation

* Really encouraging results for cost model tuning!

* Tuned parameters are not transferrable!
* Overfitting to a workload - a benchmark workload with coverage of all operators
* Interplay with cardinality estimation errors = injecting true cardinality leveraging prior work [2]

[2] Kukjin Lee, et al. 2023. Analyzing the Impact of Cardinality Estimation on Execution Plans in Microsoft SQL Server. In PVLDB.

A standard plan specification is essential for
QOaaS

QQOaaS should explore all possible optimization
opportunities

Key Lessons
Learned

QOaaS needs to generate engine-specific costs

QOaaS should allow instance-based optimization

Time for a new deSign? (e.g. ML-based QO enhancement)

Fiddling with a production-level customized QO for

QOaaS requires significant engineering effort

unoptimized logical plan

QOaa$S

-

Logical Operators & Physical Operators

Simplification \

optimized tgical plan

CBO Exploration

Card. Estimation

Cost Model

optimized logical plan
w physicallannotation

Post Optimization

optimized physical plan

Execution Runtimes

A QOaaS Proposal

Core Component

e Standard plan specification

* Modular, extensible components

 Adding engines-propertyto
operators and rules

* New cross-engine data exchange
operator

* Engines-property is enforced
during optimization

 Cost model takes target engine as

an additional input

unoptimized logical plan A QOaaS PrOposal

_\QOaaS

Simplification

///

optimized *gical plan Servification

 Dedicated resources for QOaaS

CBO Exploration

* Elastic scale up and out

Logical Operators & Physical Operators

Card. Estimation independently
Cost Model e Canrun different versions of QO
optimizedtgical plan simultaneously
w physica{iannotation * Easydeployment and testing

Post Optimization

optimized physical plan

Execution Runtimes

unoptimized logical plan A QOaaS PrOposal

QOaa$S

Observability

// Simplification * Automatically capturing queries,

Query Insight . o
Store plans, and runtime statistics

optimized lbgical plan]
External Tuner Pluggable External Service

Plugin

CBO Exploration

* e.g. MV/index selection, ML-based

Config/Action QO enhancement
Store

A

Card. Estimation

* APIs toreadinfo from Query
Cost Model

Insight Store

e APIsto store information into the

Logical Operators & Physical Operators

optimized logical plan
w physicallannotation

Post Optimization <« Config/Action Store

optimized physical plan Feedback to QO

Execution Runtimes e Enhancement from the stored info

Open
Discussion and
Debate

Is QOaaS a fantasy?
Will it work?

_ 2N
%
v
-

	Default Section
	Slide 1: Towards Query Optimizer as a Service (QOaaS) In a Unified Lakehouse Ecosystem:
	Slide 2: Industry Trends
	Slide 3: Industry Trends
	Slide 4: Industry Trends
	Slide 5: Industry Trends
	Slide 6: QO Status Quo: Reinventing Wheels
	Slide 7: QOaaS
	Slide 8: Steps Towards QOaaS
	Slide 9: CH1: Standardizing Plan Specification
	Slide 10: CH2: Can UQO optimize Spark Queries?
	Slide 11: A Simple QOaaS Prototype
	Slide 12: Performance Study
	Slide 13: CH3: Recalibrating and Tuning the Cost Model
	Slide 14: Performance Study
	Slide 15: Key Lessons Learned
	Slide 16: A QOaaS Proposal
	Slide 17: A QOaaS Proposal
	Slide 18: A QOaaS Proposal
	Slide 20: Open Discussion and Debate

