
Presenter: Yuanyuan Tian

Gray Systems Lab (GSL), Microsoft

GSL: Rana Alotaibi*, Stefan Grafberger*, Nicolas Bruno, Brian Kroth, Sergiy Matusevych, Ashvin Agrawal, Carlo Curino
Fabric DW: Jesus Camacho-Rodríguez, Cesar Galindo-Legaria, Milind Joshi, Milan Potocnik, Beysim Sezgin, Xiaoyu Li
Fabric Spark: Mahesh Behera, Ashit Gosalia

Industry Trends

Demand: Fragmentation → Convergence

Microsoft Fabric
• Shared Data on Lake
• Shared Compute Resource
• Shared Governance Experience

Industry Trends

Microsoft Fabric
• Shared Data on Lake
• Shared Compute Resource
• Shared Governance Experience

Demand: Fragmentation → Convergence

Industry Trends

Microsoft Fabric
• Shared Data on Lake
• Shared Compute Resource
• Shared Governance Experience

Demand: Fragmentation → Convergence

Architecture: Monolithic → Composable

• Cloud DB: separation of storage from compute
• Open standards

• Parquet, Arrow, Substrait
• OSS system-building libraries

• Calcite, Orca, Velox, Datafusion

Industry Trends

Microsoft Fabric
• Shared Data on Lake
• Shared Compute Resource
• Shared Governance Experience

Demand: Fragmentation → Convergence

Architecture: Monolithic → Composable

• Cloud DB: separation of storage from compute
• Open standards

• Parquet, Arrow, Substrait
• OSS system-building libraries

• Calcite, Orca, Velox, Datafusion

QO Status Quo: Reinventing Wheels
A proliferation of analytical engines with their own QOs following similar patterns

• Same relational algebra, similar search spaces, and same stages

Parsing/
Algebrization

Simplification/
Normalization

Exploration
(CBO)

Post-
optimization

• AST → algrebraic tree

• Name resolution

• Type inference

• Iteratively apply

transformation rules

• E.g. filter push-down,

constant folding,

decorrelation, etc

• Cost-based exploration

• search space

• enumeration strategy

• DP or Cascades

• cost model

• Peephole transformations

on the final plan

QOaaS

Focus: for analytical engines in a unified Lakehouse
ecosystem, e.g. Microsoft Fabric

Features Custom QO QO as a Library
(Calcite, Orca) QOaaS

Innovation speed ✓ ✓
Engineering
efficiency ✓ ✓
New engine time-
to-market ✓ ✓

QO scalability ✓
Workload
Observability ✓
Workload
Optimization ✓
Cross-engine
optimization ✓

- Independent QO service interacting with multiple
engines over RPC

Steps Towards QOaaS

• Building on our own experience

• Developing Calcite

• Evolving Cascades framework within Microsoft

• Initial focus

• Two engines: DW and Spark on Fabric Ecosystem

• Adapting UQO (Fabric DW QO) to QOaaS

• Key Challenges:

• CH1: Exchanging plans in and out of QO

• CH2: Adapting UQO for different engines

• CH3: Adjusting the cost model

SQL Server
QO

SCOPE QOPDW QO

Synapse
DW QO

Fabric DW
QO (UQO)

QO Evolution in Microsoft

CH1: Standardizing Plan Specification

• Substrait: open-source, cross-language plan specification for relational algebra
• Various serialization formats
• Extensibility for custom operations
• Ecosystem for libraries and toolings

• Making Substrait as the cross-engine plan specification on Fabric
• Ongoing collaborative effort across GSL, DW, Spark, and Power BI
• Current coverage: TPC-H, TPC-DS, internal benchmarking workloads

CH2: Can UQO optimize Spark Queries?

Spark QO

• Mostly non-CBO
• CBO only applies to join ordering and

broadcast-vs-shuffle join decision

UQO

• Full-stack Cascades framework with
255 CBO rules

• Sophisticated cost model

Naïve replacement won’t work!

• Physical Operator Gaps
• Some Fabric DW physical operators are

unsupported in Spark
• Example: merge/hash-based union

• Feature Support Disparities
• UQO cannot fully exploit Spark-specific

features
• Example: Hive-style partitioning

A Simple QOaaS Prototype

• UQO*
• Not generating unsupported operators in Spark

• Spark QO*
• Adding Spark specific optimization rules lacking in UQO

UQO* Spark QO*

QOaaS-v1
logical optimization further optimization + physical

implementation

QOaaS-v2
logical + physical

optimization
further optimization + physical
implementation based on hints

from UQO*

Performance Study

0

1

2

3

4

5

6

5 Joins 10 Joins 15 Joins 20 Joins 25 Joins 30 Joins 35 Joins 40 Joins

N
O

RM
AI

LI
ZE

D
 T

IM
E

Spark QO QOaaS-v1 QOaaS-v2

MSSales Workload
• 627 tables on OneLake (5TB, delta parquet)
• Highly templatized queries, join heavy

Takeaway
• UQO-based QOaaS looks promising!
• QOaas-v2 performs better than QOaaS-v1

TPC-H SF1000 (1TB)

• QOaaS-v2 is comparable to SparkQO

• Average diff <6%

• Q5 is 1.5x slow

• Not fully utilizing Bloom filters

• Adding optimizations retroactively is suboptimal,
all optimization opportunities should be
explored!

CH3: Recalibrating and Tuning the Cost Model

• A fixed cost model is unlikely to work for QOaaS

• 1st attempt: changing cost model without
rewrite
• Recalibrating and tuning constant parameters in

UQO’s cost formula
• MLOS [1] : OSS ML-powered tuner

60 parameters

[1] MLOS. https://github.com/microsoft/MLOS

Performance Study
MSSales Workload

Observation
• Really encouraging results for cost model tuning!
• Tuned parameters are not transferrable!

• Overfitting to a workload → a benchmark workload with coverage of all operators
• Interplay with cardinality estimation errors → injecting true cardinality leveraging prior work [2]

TPC-H

[2] Kukjin Lee, et al. 2023. Analyzing the Impact of Cardinality Estimation on Execution Plans in Microsoft SQL Server. In PVLDB.

Key Lessons
Learned

A standard plan specification is essential for
QOaaS

QOaaS should explore all possible optimization
opportunities

QOaaS needs to generate engine-specific costs

QOaaS should allow instance-based optimization
(e.g. ML-based QO enhancement)

Fiddling with a production-level customized QO for
QOaaS requires significant engineering effort

Time for a new design?

A QOaaS Proposal

Simplification

unoptimized logical plan

CBO Exploration
Rules

Post Optimization

optimized physical plan

Lo
gi

ca
l O

pe
ra

to
rs

 &
 P

hy
si

ca
l O

pe
ra

to
rs

Card. Estimation

Cost Model

M
et

ad
at

a
sc

he
m

a
&

 s
ta

ts

QOaaS

Execution Runtimes

Substrait

Substrait

Rules
Core Component

• Standard plan specification

• Modular, extensible components

• Adding engines-property to

operators and rules

• New cross-engine data exchange

operator

• Engines-property is enforced

during optimization

• Cost model takes target engine as

an additional input

optimized logical plan

optimized logical plan
w physical annotation

A QOaaS Proposal

Simplification

unoptimized logical plan

CBO Exploration
Rules

Post Optimization

optimized logical plan

optimized logical plan
w physical annotation

optimized physical plan

Lo
gi

ca
l O

pe
ra

to
rs

 &
 P

hy
si

ca
l O

pe
ra

to
rs

Card. Estimation

Cost Model

M
et

ad
at

a
sc

he
m

a
&

 s
ta

ts

QOaaS

Execution Runtimes

Substrait

Substrait

Rules

Servification

• Dedicated resources for QOaaS

• Elastic scale up and out

independently

• Can run different versions of QO

simultaneously

• Easy deployment and testing

A QOaaS Proposal

Simplification

unoptimized logical plan

CBO Exploration
Rules

Post Optimization

optimized logical plan

optimized logical plan
w physical annotation

optimized physical plan

Lo
gi

ca
l O

pe
ra

to
rs

 &
 P

hy
si

ca
l O

pe
ra

to
rs

Card. Estimation

Cost Model

Config/Action
StoreM

et
ad

at
a

sc
he

m
a

&
 s

ta
ts

QOaaS

Execution Runtimes

External Tuner
Plugin

Substrait

Substrait

Rules Query Insight
Store

Observability

• Automatically capturing queries,

plans, and runtime statistics

Pluggable External Service

• e.g. MV/index selection, ML-based

QO enhancement

• APIs to read info from Query

Insight Store

• APIs to store information into the

Config/Action Store

Feedback to QO

• Enhancement from the stored info

Open
Discussion and
Debate

Is QOaaS a fantasy?

Will it work?

	Default Section
	Slide 1: Towards Query Optimizer as a Service (QOaaS) In a Unified Lakehouse Ecosystem:
	Slide 2: Industry Trends
	Slide 3: Industry Trends
	Slide 4: Industry Trends
	Slide 5: Industry Trends
	Slide 6: QO Status Quo: Reinventing Wheels
	Slide 7: QOaaS
	Slide 8: Steps Towards QOaaS
	Slide 9: CH1: Standardizing Plan Specification
	Slide 10: CH2: Can UQO optimize Spark Queries?
	Slide 11: A Simple QOaaS Prototype
	Slide 12: Performance Study
	Slide 13: CH3: Recalibrating and Tuning the Cost Model
	Slide 14: Performance Study
	Slide 15: Key Lessons Learned
	Slide 16: A QOaaS Proposal
	Slide 17: A QOaaS Proposal
	Slide 18: A QOaaS Proposal
	Slide 20: Open Discussion and Debate

