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QO Status Quo: Reinventing Wheels

A proliferation of analytical engines with their own QOs following similar patterns

 Same relational algebra, similar search spaces, and same stages
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» AST - algrebraic tree
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QOaaS

- Independent QO service interacting with multiple
engines over RPC

Focus: for analytical engines in a unified Lakehouse
ecosystem, e.g. Microsoft Fabric

Innovation speed

Engineering
efficiency

New engine time-
to-market




Steps Towards QOaaS SQL Server

0]0)

* Building on our own experience
* Developing Calcite SCOPE QO
* Evolving Cascades framework within Microsoft

* Initial focus
* Two engines: DW and Spark on Fabric Ecosystem Synapse

. . DW QO
* Adapting UQO (Fabric DW QO) to QOaa$S

* Key Challenges:
* CH1: Exchanging plans in and out of QO Fabric DW

. . ) QO (UQO)

* CH2: Adapting UQO for different engines

* CH3: Adjusting the cost model

QO Evolution in Microsoft




l| CHA1: Standardizing Plan Specification

* Substrait: open-source, cross-language plan specification for relational algebra

e Various serialization formats :
oo . Substrait
* Extensibility for custom operations

* Ecosystem for libraries and toolings

 Making Substrait as the cross-engine plan specification on Fabric
* Ongoing collaborative effort across GSL, DW, Spark, and Power Bl
* Current coverage: TPC-H, TPC-DS, internal benchmarking workloads




CH2: Can UQO optimize Spark Queries?

Spark QO UQO
e Mostly non-CBO e Full-stack Cascades framework with
e CBO only applies to join ordering and 255 CBO rules
broadcast-vs-shuffle join decision e Sophisticated cost model

Naive replacement won’t work!

* Physical Operator Gaps * Feature Support Disparities
 Some Fabric DW physical operators are  UQO cannot fully exploit Spark-specific
unsupported in Spark features

« Example: merge/hash-based union  Example: Hive-style partitioning



A Simple QOaaS Prototype

Spark Query
Spark QO* « UQO*
— Substrait
+ Initial unoptimized * Notgenerating unsupported operatorsin Spark
(Subset of rules logical plan o Sp ark QO*
further optimized
logical plan uQo* * Adding Spark specific optimization rules lacking in UQO
wiwo physical hints Subsat of rules 4=
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Onelake from UQO*




Performance Study

MSSales Workload TPC-H SF1000 (1TB)
» 627 tables on OnelLake (5TB, delta parquet)
* Highlytemplatized queries, join heavy

QOaaS-v2 is comparable to SparkQO
* Average diff <6%
Q5is 1.5x slow
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* Not fully utilizing Bloom filters

5Joins 10Joins 15Joins 20Joins 25Joins 30Joins 35Joins 40 Joins

@ Spark QO QOaaS-v1 MW QOaaS-v2

Takeaway Adding optimizations retroactively is suboptimal,
* UQO-based QOaaS looks promising! all optimization opportunities should be
e QOaas-v2 performs better than QOaaS-v1 explored!



CH3: Recalibrating and Tuning the Cost Model

60 parameters

* Afixed cost modelis unlikely to work for QOaaS

e 15t attempt: changing cost model without
rewrite

* Recalibrating and tuning constant parameters in
UQQO’s cost formula

e MLOS [1]: OSS ML-powered tuner

B BatchExecutionCost H CpuCost u ExchangeCost
m HashJoinCost m |0OCost m PredicateCost
» RowFacorCost m StartupCost

[11 MLOS. https://github.com/microsoft/MLOS
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Performance Study
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* Really encouraging results for cost model tuning!

* Tuned parameters are not transferrable!
* Overfitting to a workload - a benchmark workload with coverage of all operators
* Interplay with cardinality estimation errors = injecting true cardinality leveraging prior work [2]

[2] Kukjin Lee, et al. 2023. Analyzing the Impact of Cardinality Estimation on Execution Plans in Microsoft SQL Server. In PVLDB.



A standard plan specification is essential for
QOaaS

QQOaaS should explore all possible optimization
opportunities

Key Lessons
Learned

QOaaS needs to generate engine-specific costs

QOaaS should allow instance-based optimization

Time for a new deSign? (e.g. ML-based QO enhancement)

Fiddling with a production-level customized QO for

QOaaS requires significant engineering effort




unoptimized logical plan

QOaa$S

-

Logical Operators & Physical Operators

Simplification \

optimized tgical plan

CBO Exploration

Card. Estimation

Cost Model

optimized logical plan
w physicallannotation

Post Optimization

optimized physical plan

Execution Runtimes

A QOaaS Proposal

Core Component

e Standard plan specification

* Modular, extensible components

 Adding engines-propertyto
operators and rules

* New cross-engine data exchange
operator

* Engines-property is enforced
during optimization

 Cost model takes target engine as

an additional input




unoptimized logical plan A QOaaS PrOposal

_\QOaaS

Simplification

///

optimized *gical plan Servification

 Dedicated resources for QOaaS

CBO Exploration

* Elastic scale up and out

Logical Operators & Physical Operators

Card. Estimation independently
Cost Model e Canrun different versions of QO
optimizedtgical plan simultaneously
w physica{iannotation * Easydeployment and testing

Post Optimization

optimized physical plan

Execution Runtimes



unoptimized logical plan A QOaaS PrOposal

QOaa$S

Observability

// Simplification * Automatically capturing queries,

Query Insight . o
Store plans, and runtime statistics

optimized lbgical plan ]
External Tuner Pluggable External Service

Plugin

CBO Exploration

* e.g. MV/index selection, ML-based

Config/Action QO enhancement
Store

A

Card. Estimation

* APIs toreadinfo from Query
Cost Model

Insight Store

e APIsto store information into the

Logical Operators & Physical Operators

optimized logical plan
w physicallannotation

Post Optimization <« Config/Action Store

optimized physical plan Feedback to QO

Execution Runtimes e Enhancement from the stored info




Open
Discussion and
Debate

Is QOaaS a fantasy?
Will it work?
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