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Abstract
Workload management (WLM) is essential for cloud providers to
balance performance, reliability, and cost. Many WLM tasks rely
on understanding workload behavior through time series similarity
analysis, but traditional approaches face scalability challenges due
to manual feature engineering and computational overheads. Foun-
dational time series models promise to address these limitations by
learning reusable representations with minimal supervision. This
paper evaluates their practical potential forWLM through a focused
case study on time series similarity. We present concrete use cases,
characterize a real-world query arrival dataset from Microsoft Fab-
ric Warehouse, and compare the foundational model MOMENT
against conventional similarity methods. Our findings reveal that
while foundational models offer computational efficiency, they pro-
duce overly generalized similarities with limited interpretability
compared to hand-engineered features. We identify key challenges
and research directions needed to make foundational models prac-
tical for workload management.

CCS Concepts
• Information systems → Data management systems; • Com-
puting methodologies → Machine learning; • Computer sys-
tems organization → Cloud computing.

Keywords
Workload Management, Workload Analysis, Workload Embeddings,
Query Embeddings, Time Series, Microsoft Fabric, Query Dataset

1 Introduction
Cloud service providers face the challenge of balancing customer
demands (adequate response times, reliable service availability, etc.)
with operational costs. In cloud environments, resources such as
computing power, storage, and bandwidth must be dynamically
allocated to meet varying customer needs. Efficient workload man-
agement (WLM) is essential to avoid resource wastage during low
demand periods and resource shortages during peak times. Exam-
ples of workload optimization include resource oversubscription,
which allocates more virtual resources than the available physi-
cal resources based on predictable time-series workload patterns,
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and scheduling database maintenance tasks during periods of low
query load by learning customer query submission behavior (more
examples in Section 2.1).

Workloadmanagement improves systemperformance and
customer satisfaction by optimizing for workload charac-
teristics. At its core, this requires understanding how workloads
behave over time—a process we refer to as workload intelligence. Be-
cause system metrics like query arrival rates, CPU usage, and cache
hit ratios evolve as time series, effective workload management de-
pends on analyzing and comparing these signals. For example, time
series of query arrivals can reveal predictable low-traffic periods,
for scheduling maintenance tasks like index rebuilds or statistics
updates. Similarly, comparing system performance under current
query arrival patterns to historical observations helps distinguish
between typical and anomalous behavior. Many workload intelli-
gence tasks aim to identify recurring patterns, detect anomalies, or
match new workloads to known behaviors. Assessing time series
similarity is therefore essential for workload management.

A core challenge for cloud providers is the superlinear
growth of workload management overhead with the cus-
tomer base. The overhead of traditional time series analysis meth-
ods underlying workload management grows with workload vol-
ume and diversity. On one hand, automatic unsupervised meth-
ods are computationally expensive—for example, workload pattern
matching using Dynamic Time Warping (DTW) can have quadratic
complexity in both the number and length of time series [24]. On
the other hand, supervised approaches require human feature engi-
neering and careful tuning of algorithms for each new workload
pattern. At the hyperscale of Microsoft Azure and other clouds,
these overheads create a significant burden and slow the advance-
ment of sophisticated workload management.

Foundational time series models promise significant ad-
vantages for workload management compared to traditional
approaches. The core idea is that extensive pretraining allows
foundational models to capture semantically meaningful features
in compact vectors. In this way, foundational models promise to
adapt to various data characteristics and support various tasks with
little or no human supervision. As a result, foundational time series
models represent an exciting direction for improving the efficiency
and capabilities of workload management in clouds like Azure.

This paper calls for continued research to make founda-
tional time series models practical for cloud workload man-
agement. We show that currently, limited generalization across
data characteristics and interpretability of foundational models
hinder their deployment in production. We therefore motivate fur-
ther research on foundational models as follows. In Section 2, we
outline practical workload management use cases based on time
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series similarity, offering concrete scenarios for follow-up research.
In Section 3, we characterize our dataset of real-world query ar-
rival rates on Fabric Data Warehouse [18]. We plan to publish our
dataset in the Azure Public Repository1 to support future research.
In Section 4, our case studies on time series similarity and cluster-
ing highlight the limitations of foundational models in delivering
concise and interpretable similarity measures. Finally, in Section 5,
we reflect on the lessons learned and the open challenges for foun-
dational models to serve as versatile, efficient, and reliable tools for
workload management at scale.

Workloads tell stories,
Embeddings speak in riddles—
Trust needs clear answers.

2 Background
2.1 Time Series Similarity for Workload

Management
Time series similarity is a fundamental tool in workload manage-
ment. Many tasks across performance optimization, system plan-
ning, and operational efficiency depend on understanding how
workloads behave and evolve over time. These behaviors are cap-
tured in time series—such as query arrival rates, resource consump-
tion, or systemmetrics—either as real observations or as predictions.
We outline key similarity-driven tasks and their corresponding use
cases below:
• Identifying Representative Patterns. Grouping workloads
by similarity enables systems to select representative patterns
for each cluster. These representatives support the creation of
new benchmarks and offline optimization such as configuration
tuning via frameworks like MLOS [2, 13]. Grouping by similarity
can also help with model selection, such as in scenarios with
many coexisting models for workload prediction [5–9, 21].

• Tracking Change Over Time.Comparing time series segments
over time supports trend analysis and evolution tracking. This is
useful for assessing workload growth, refining system features,
or triggering reoptimization pipelines when workloads diverge
from previously optimized patterns [12, 26].

• Outlier Detection. Similarity can reveal unusual workload
patterns or queries that deviate significantly from known be-
havior. Such outliers may indicate potential system incidents
or emerging workload classes—informing both operational re-
sponses and long-term planning. Work like Griffon [25] illus-
trates data-driven approaches to detecting job anomalies, while
open challenges remain in industry [19].

• Pattern Matching for Scheduling. Similarity also supports
alignment or anti-alignment of workloads for resource alloca-
tion and scheduling of maintenance tasks. For example, work-
loads with non-overlapping demand patterns can be colocated
to improve resource utilization. Likewise, predictable low-traffic
periods can guide the timing of background operations such as
index rebuilds or statistics refreshes [5, 21, 22].
These similarity tasks underpin both workload intelligence and

optimization—characterizing workloads and adapting systems to
them. While prediction methods play a complementary role by

1Dataset at https://aka.ms/fabric-dw-query-arrivals-dataset

enabling forward-looking analysis [11, 16], this paper focuses ex-
clusively on the practical analysis of time series similarity for both
observed and predicted data, without addressing prediction models
or optimization algorithms directly.
2.2 Foundational Time Series Models
Foundation models for time series offer a powerful new para-
digm for workload management by enabling zero-shot, few-shot,
and multi-task capabilities across forecasting, anomaly detection,
classification, and more. Trained on diverse datasets, these models
capture general temporal patterns such as seasonality, spikes, or
trends, making them highly adaptable to new domains with mini-
mal fine-tuning [10, 17]. They reduce the manual effort required
for building task-specific models and eliminate feature engineering
steps, thereby streamlining deployment pipelines and accelerating
innovation in dynamic workload environments.

Time-series-native and LLM-based models. LLM-based mod-
els such as Chronos [3] treat time series as token sequences and
apply language modeling techniques, benefiting from the scala-
bility and pretraining infrastructure developed for NLP. However,
they often require discretization, which may compromise numerical
precision for tasks like forecasting. In contrast, time-series-native
models like MOMENT [10] operate directly on raw numerical time
series and are designed with temporal structures in mind. As a re-
sult, they tend to be more compact, interpretable, and better suited
for continuous-valued signals, making them particularly effective
for practical workload management scenarios.

Exemplary focus on MOMENT. This study focuses on MO-
MENT due to its promise for workload telemetry and system signals.
MOMENT is pretrained on a broad collection of public datasets
and designed to generalize across diverse domains with minimal
supervision, making it ideal for handling the noisy, heterogeneous,
and high-dimensional time series typical in cloud workloads [10].
Its lightweight architecture supports efficient inference and fine-
tuning, and its strong few-shot performance aligns well with the
practical demands of systems that observe ever-evolving work-
loads with limited labeled data. These properties make MOMENT
a promising candidate for advancing similarity-based workload
analysis in both research and production settings.

3 Real-World Query Arrival Dataset
We present a real-world dataset of query arrivals for our case study
and to support future research.

3.1 Dataset and Basic Characteristics
Our dataset captures telemetry data on queries submitted by cus-
tomers to the Microsoft Fabric Warehouse [18]. The dataset covers
January 2025 and includes a sample of customers from one pop-
ular cloud region. It records the number of submitted queries in
15-minute intervals, per customer and query type: insert, delete,
update, aggregate, join, and simple select2. In total, the dataset com-
prises over 1.4 million query submissions.

Before utilizing this dataset to study time series similarities, we
need to analyze its basic characteristics: What is the range of query

2We classify query types by the presence of the corresponding operators with decreas-
ing precedence, e.g., aggregates identify aggregate queries and among the remaining
queries joins identify join queries.
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Figure 1: CDF of the absolute number of query arrivals, the
mean, coefficient of variation, and approximate entropy.
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Figure 2: Number of customers with periodic patterns.

counts that arrive at a given time, depending on the type of query?
Do they exhibit regular patterns or behave randomly? If they exhibit
regular patterns, are these patterns periodic? In this regard, Figure 1
shows cumulative distribution function (CDF) plots of four statistics
by query type: the absolute and mean query arrival rates as well as
their variation (CV) and approximate entropy.
Distribution of Values. A large fraction of time steps have zero
arrivals, ranging from 65% for Simple Select to 90% for Deletes
and Updates. Though the long tail is omitted for clarity, the query
arrivals reach values in the thousands, indicating high traffic from
very few customers. The abundance of zeros in the time series skews
the mean arrival rates to have relatively low values, with most time
series averaging under 50; however, around 10% of Simple Select,
Join, and Aggregation queries reach average arrivals between 50–
170. In terms of variability (CV is the standard deviation divided by
the mean), we observe longer tails for the more sporadic queries,
such as Updates and Deletes, because of their higher divergence
from their very low mean values.
Regularity. Approximate Entropy [20] (ApEn) is a measure of
how predictable a time series is. It quantifies the likelihood that
patterns in the data repeat over time. To compute ApEn, we examine
sequences of 𝑚 consecutive values in the time series (called the
embedding dimension). For each such sequence, we count howmany
other sequences of the same length are similar to it—that is, their
values stay within a specified tolerance 𝑟 . We then repeat this
process for sequences of length𝑚 + 1, and compare the results. If
sequences that are similar at length𝑚 remain similar at length𝑚+1,
then the ApEn value will be low. Conversely, if the addition of one
more data point leads to dissimilarity, the ApEn value increases.
That is, a low ApEn value (close to 0) indicates time series have
simple structure (e.g., a flat line) while a high value indicates highly
irregular time series. As shown in Figure 1, a subset of workloads
across different categories exhibits strong regularity. Notably, a
higher proportion of Update, Insert, and Aggregate workloads
demonstrate regular behavior compared to the other types.

Periodicity. We use Fast Fourier Transform (FFT) to identify re-
curring patterns in query traffic. This reveals dominant periodic
components, such as daily (1-day), multi-day (2- or 3-day), and
intra-day (4-, 8-, 12-hour) cycles. Figure 2 shows the percentage of
customers whose query arrivals align with these dominant frequen-
cies. Daily periodicity is prominent across all query types, seen in
79.2% of sampled customers. Patterns repeating every 3 days (33.4%)
and every 4 hours (19.2%) are also evident.
Take-ways: Our global characterization reveals that the dataset
exhibits diverse and complex structure across customer workloads,
some of which relates to rich periodic patterns with overlapping
daily, multi-day, and intra-day cycles. This complexity highlights
the challenges inherent in our real-world query arrival time se-
ries data and underscores the need for robust and generalizable
representations and similarity analysis for effective workload man-
agement.

3.2 Diverse Subset for Evaluation
To support our case study on time series similarity and modeling,
we select a subset of five customers with diverse arrival behaviors
and human-perceived similarities and dissimilarities. This section
details their key characteristics.
Diversity of Query-level Patterns. Figure 3a shows normalized
monthly simple select query arrivals for the five customers,
revealing a mix of regular, bursty, and irregular patterns. We first
visually interpret the structure of these time series:
• Customer 1 shows sparse, short daily bursts with high regularity,
serving as the reference for comparison.

• Customer 2 has similar daily bursts but is more spiky and tempo-
rally misaligned.

• Customer 3 exhibits continuous low-magnitude signals with
weak periodicity.

• Customer 4 shows mid-month bursts with semi-regular structure.
• Customer 5 is mostly inactive except for a short, bursty interval
around the middle of the month.

Figure 3b zooms into a single day (Jan. 15) and confirms the complex
and diverse structure ranging from sustained usage to sporadic
bursts also at daily resolution.
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Figure 3: Arrivals of simple select queries over a month and
a day for five customers. Query count (y-axis) is min-max
normalized separately for monthly and daily arrivals.
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Month-wide Day-wide

Customer Mean CV Entropy Mean CV Entropy

1 0.002 5.839 0.503 0.012 4.346 1.009
2 0.016 2.927 1.909 0.059 2.804 1.863
3 0.017 0.963 3.203 0.066 0.693 3.200
4 0.124 1.713 2.465 0.079 2.151 2.093
5 0.026 2.710 2.209 0.366 0.643 3.859

Table 1: Mean, coefficient of variance (CV) and entropy for
the normalized month-wide and day-wide arrivals of simple
selects for the 5 selected customers.

1 2 3 4 5
Customer

Simple Select
Aggregation

Delete
Insert

Join
Update

1.00 1.00 1.00 1.00 1.00
0.89 0.89 0.53 0.08 0.94
0.85 0.66 0.00
0.88 0.52 0.27 0.33 0.42
0.91 0.89 0.14 0.89
0.89 0.53 0.20

Query Similarity
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Figure 4: Similarity of arrival times across query types for
the 5 selected customers.

Table 1 quantifies this diversity using the coefficient of variation
(CV) and entropy, highlighting variability across customers. Inter-
estingly, some customers exhibit high CV, indicating values that
deviate significantly from the mean, yet have low entropy, suggest-
ing predictable patterns. For example, Customer 1 demonstrates
this behavior. Conversely, Customer 3 shows the opposite trend,
with low CV and high entropy, illustrating the dataset’s diversity.
Cross-Query Similarity Within Customers.We also examine
whether different query types follow similar temporal patterns
within each customer. Figure 4 presents a heatmap of normalized
similarity (via reversed Euclidean distance) between the simple
select query and other query types. We observe distinct behav-
ioral profiles. For example, Customer 1 issues all query types con-
currently, while Customer 3 exhibits noisy and unaligned activity.
Customers 4 and 5 primarily execute read-only queries, suggesting
different styles of database usage.
Take-ways: The analysis of five customers with diverse yet struc-
tured query arrival patterns reveals several visual and analytical
insights. Customers 1 and 2 exhibit strong daily periodicity and
bursty arrivals, while Customers 3 to 5 show weaker or no clear
periodicity. Customer 3 has a low but continuous signal, in contrast
to Customers 4 and 5, who display bursty arrivals concentrated
around mid-month. These patterns suggest visually and intuitively
identifiable groupings: specifically, a high similarity between Cus-
tomers 1 and 2 due to their daily bursts, and a marked dissimilarity
between them and Customers 3 to 5. Next, wewill see whether these
human-interpretable expectations align with similarity derived from
time series analysis (Section 4).

Domain Transformation Metric

Time None, Min-Max,
Z-Score

Euclidean,
DTW [24]

Frequency FFT Euclidean,
DTW [24]

Frequency & Time Wavelet [14] Euclidean,
DTW [24]

Embedding FoundationModel
(FM) [10]

Euclidean,
Cosine

Table 2: Time series similarity by common transformations
and metrics in the time, frequency, and embedding space.

4 Time Series Similarity: Case Study
In this section, we conduct a focused case study to evaluate the
practicality of different similarity approaches — conventional and
foundational — for workload management on our dataset. Engi-
neers must be able to understand and trust similarity scoring of
workloads, since these scores directly determine how downstream
tasks interpret these workloads. We hence start by examining how
similarity approaches align with intuitive, human-understandable
patterns in real workload time series. Then, we evaluate clustering
as a concrete downstream task where similarity scores directly
impact outcomes like the identification of workload patterns.

4.1 Time Series Similarity: Interpretability
Similarity between time series is a core building block for many
workload management tasks in clouds like Microsoft Azure. Cru-
cially, engineers and operators must be able to understand, trust,
and explain why two workloads are considered similar. Without
this, similarity metrics risk becoming black-box scores with limited
practical utility. Our goal is to test the interpretability of time series
similarity approaches for practical purposes.

Evaluation Setup.We compare the similarity rankings to hu-
man intuition derived from the visible patterns in the raw time se-
ries. Specifically, we focus on comparing the similarity of Customer
1’s simple select query arrival time series against the corresponding
time series of Customers 2–5. Table 2 provides an overview of the
similarity approaches that we describe and evaluate in the follow-
ing. The evaluated methods are grouped into four domains: time,
frequency, frequency-time, and embedding space. For embedding
space, we use a foundational model, MOMENT, whereas the other
domains use conventional approaches. Notably, we use the small
MOMENT fine-tuned to our dataset, which shows significantly
improved representation accuracy on our workload time series
compared to the pretrained and large version (see Appendix 6.1
for details). Despite this improvement, we note that the model still
struggles with abrupt changes characteristic of query arrival pat-
terns. This sets the stage for our evaluation of howwell such models
capture workload similarity from a practical perspective.

For each similarity method, we describe how well the similarity
aligns with visual intuition based on the normalized time series
(Figure 3a) and discuss key takeaways. Figure 5 visualizes the result-
ing similarity scores across methods. We begin with conventional
similarity methods. These approaches offer transparency and con-
trol, since users can select desired transformations and similarity
metrics to emphasize specific characteristics of the time series, such
as shape, burstiness, or periodicity.
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1 2 3 4 5
Customer

none eucl
none dtw

min-max eucl
min-max dtw
z-score eucl
z-score dtw

fft eucl
fft dtw

wavelet eucl
wavelet dtw

FM eucl
FM cos

1 0.78 0.89 0 0.69

1 0.85 0.83 0 0.8

1 0.43 0 0.13 0.51

1 0.7 0 0.46 0.77

1 0 0.021 0.03 0.055

1 0.56 0 0.14 0.43

1 0.87 0.92 0 0.73

1 0.78 0.92 0 0.77

1 0.84 0.91 0 0.71

1 0.91 0.89 0 0.79

1 0.82 0 0.81 0.49

1 0.92 0 0.91 0.63

Similarity (1 Month)

1 2 3 4 5
Customer

1 0.7 0.84 0.1 0

1 0.86 0.89 0.7 0

1 0.57 0.12 0.35 0

1 0.82 0.42 0.78 0

1 0.034 0.085 0 0.085

1 0.44 0.17 0 0.14

1 0.84 0.89 0.24 0

1 0.71 0.79 0.039 0

1 0.83 0.9 0.32 0

1 0.94 0.94 0.67 0

1 0.85 0 0.77 0.58

1 0.94 0 0.84 0.65

Similarity (1 Day)
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Figure 5: Similarity of simple select query arrivals of Cus-
tomer 1 versus Customers 1–5; highest = 1, lowest = 0.

4.1.1 Conventional Methods: Time Domain. No transformation:
Euclidean andDTW (Dynamic TimeWarping) both rate Customers 2,
4, and 5 as similar to Customer 1. This is largely due to similar vol-
ume and periods of inactivity. DTW smooths misalignment but
also overstates similarity to Customer 5, which is visually distinct.
These results show that raw-value comparisons can be misleading
when dominated by shared low-activity phases.

Min-max normalization: These methods emphasize shape
over scale. DTW aligns well with intuition—highlighting high simi-
larity of Customer 2 (similar bursts) and Customer 4 (moderately
bursty). However, Customer 5 is rated too highly, likely due to
low-activity phases. Euclidean with min-max fails to capture time-
shifted bursts and underrates Customer 4.

Z-score normalization: Both Euclidean and DTW metrics per-
form poorly under Z-score normalization. The transformation re-
moves signal shape in favor of deviation from the mean, producing
low interpretability.
4.1.2 Conventional Methods: Frequency and Time-Frequency Do-
mains. FFT andwavelet-based similarity correctly groupCustomers 1–
3 as similar, due to the strong periodic structure observed previously.
However, they ignore temporal alignment, overrating Customer 3
despite its irregular spikes. These methods are useful for coarse
trends but struggle with fine-grained behaviors.
4.1.3 Foundational Model Approaches. We compute embeddings
using the fine-tuned small MOMENT model and compare similar-
ity via Euclidean and cosine distance. The similarity scores are
consistent across metrics: Customers 2 and 4 are most similar to
Customer 1, followed by Customer 5, with Customer 3 least similar.
This matches high-level visual similarity—Customer 2 shares bursty
shape; Customer 3 is flat and continuous.

However, some results are hard to explain—Customer 4’s bursts
differ significantly in timing and density. The embedding scores
suggest meaningful structure, but it remains unclear what dimen-
sions influence the similarity judgments. Compared to conventional
methods, embedding similarity aligns with intuitive results for Cus-
tomers 2 and 3, but its reasoning is opaque.

Figure 6: Embedding similarity of monthly simple select
query arrivals of Customer 1 versus Customers 1–5 under
Gaussian noise with 0 mean and 𝜎 ; highest = 1, lowest = 0.

Sensitivity to Noise. In Figure 6, we inject Gaussian noise
(𝜎 = 2, 4) into Customers 1–5 and recompute similarity to the origi-
nal Customer 1. Moderate noise reduces similarity for Customers 2
and 4, suggesting embeddings rely on burst structure. Stronger
noise causes all scores to converge, indicating loss of structure.
Notably, Customer 3’s similarity remains stable, implying its em-
bedding lacks sensitivity to additional noise.
Take-ways: Among conventional methods, min-max DTW best
matches human intuition by capturing recurring burst patterns.
Frequency-based methods capture recurring patterns but miss tim-
ing. Embedding-based similarity offers consistent, plausible rank-
ings and some robustness to noise, but lacks interpretability. Its
results cannot be easily explained or diagnosed—posing challenges
for practical workload management.

4.2 End-to-end Time Series Clustering
We now examine how the similarity approaches affect hierarchical
clustering for workload pattern mining—contrasting our isolated
interpretability findings with practical end-to-end performance.
Since clustering algorithms group time series based solely on cal-
culated similarities, the choice of similarity approach determines
both cluster composition and quality. Effective similarity measures
for cloud workload management must balance four critical factors:
(1) precisely separating distinct workload patterns, (2) correctly
grouping similar behaviors, (3) maintaining reasonable computa-
tional costs, and (4) being interpretable. While we could evaluate
interpretability in isolation, the remaining three factors require
evaluation in a downstream task. We hence quantify these using
clustering, which is common in many workload management tasks.

Evaluation Setup.We evaluate hierarchical clustering (HDB-
SCAN [4]) using the similarity approaches and dataset from the
previous section. For comparison, we establish as reference the
Euclidean distance on hand-engineered feature vectors—24 time-
domain features [15] combined with 10 frequency components. We
quantify clustering quality by: (1) Adjusted Rand Index (ARI), mea-
suring cluster agreement with our reference (higher value is better);
(2) Silhouette scores in both feature and native similarity spaces
to measure cluster cohesion/separation (higher value is better); (3)
Noise ratio, indicating the fraction of time windows not assigned to
any cluster (lower value is better). We create a challenging test by
dividing our 30-day dataset into 5.333-day windows (512 samples),
which intentionally misaligns periodic patterns and forces similar-
ity approaches to detect structural relationships rather than exact
matches. For these 25 time windows, we configure HDBSCAN with
minimum cluster size of 2 [1].
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Similarity ARI Mean Silhouette Noise Clus Time
Approach Feat. Native (%) -ters (ms)

hand eucl 1.00 0.49 0.49 4 5 0.9
none dtw 0.74 0.31 0.44 20 4 3.4e+3
fft dtw 0.66 0.19 0.25 24 5 3.4e+3
z-score dtw 0.63 0.25 0.39 20 4 3.5e+3
fft eucl 0.62 0.22 0.41 16 3 0.8
min-max dtw 0.54 0.19 0.21 28 4 3.7e+3
wavelet dtw 0.46 0.19 0.24 40 3 3.7e+3
min-max eucl 0.26 -0.02 0.38 16 2 0.8
FM eucl 0.17 0.15 0.62 0 2 1.2
FM cos 0.17 0.15 0.61 0 2 1.6
none eucl 0.00 – – 100 0 0.8
z-score eucl 0.00 – – 100 0 0.8
wavelet eucl 0.00 – – 100 0 0.7

Table 3: Performance of hierarchical clustering under differ-
ent similarity approaches. ARI measures agreement with the
hand-engineered feature similarity reference—1: perfect, 0:
worst. Silhouette scores measure cluster data separation in
the hand-engineered feature space (Feat.) and native similar-
ity space (Native)—1: strong separation, 0: little separation,
-1: overlapping clusters [23]. Noise indicates the fraction of
unassigned data points—lower is better.

Clustering Results. Table 3 shows the clustering results (ad-
ditionally Figure 9 in the appendix). To set the stage, the hand-
engineered feature vector approach (hand eucl) proves as the gold
standard, with low clustering time and the highest clustering qual-
ity: highest cluster consistency (Silhouette [23] score in feature
space) and at the same time the least noise. In contrast, the lower
number of discovered clusters and the lower Adjusted Rand Index
(ARI) score indicate that compared to hand-engineering, the re-
maining approaches do not find as much structural commonality
between the time windows. Visual inspection of Figure 9 confirms
this more coarse-grained clustering. However, a clear trade-off be-
tween fast and consistent approaches becomes evident, besides the
hand-engineering approach.

Fast Approaches. The Euclidean and Cosine based approaches
are fast but cause low quality clustering, due to their limited ability
to detect structural similarity. fft eucl achieves clustering quality
comparable to some of the DTW approaches but with much lower
overhead, since the FFT transformation exposes the periodic struc-
ture. Instead, the remaining fast Euclidean approacheswith different
transformations perform poor clustering, either classifying the data
as pure noise (none eucl, z-score eucl, wavelet eucl) or identifying
only two coarse clusters (min-max eucl, FM eucl, FM cos). Notably,
the foundational model approaches (FM eucl & FM cos) assign too
high similarity to the time windows, as evidenced by the high Sil-
houette score in the embedding space but low Silhouette score in
the feature space. This reveals a limitation we could not detect in
our interpretability analysis: while embeddings produced plausible
similarity rankings, they actually over-generalize similarities be-
tween time windows, making them less discriminative for detailed
pattern identification. Similar behavior applies to min-max eucl.

DTW Approaches. The Dynamic Time Warping (DTW) ap-
proaches achieve the highest clustering quality, after the hand-
engineered features. DTWwithout transformation (none dtw) achieves
the clustering most similar to the hand approach—0.74 ARI. Trans-
formations prior to DTW, such as FFT (fft dtw), Z-score (z-score
dtw), and min-max (min-max dtw), lower clustering quality. Con-
sistent with our interpretability findings, this shows that DTW
successfully captures structural similarity between time windows
even with temporal misalignment and DTW performs best when
this structure is not distorted by transformations. In comparison to
hand-engineering, however, these approaches still do not identify
structurally complex similarity (see high noise) and incur >3000𝑥
higher compute overhead.
Take-ways: For workload pattern mining, hand-engineered fea-
tures remain the gold standard, offering superior clustering qual-
ity with minimal computational overhead. Among automated ap-
proaches, frequency domain transformations (FFT) with Euclidean
distance offer the best balance of quality and efficiency, highlighting
the importance of periodic patterns in our workload data. DTW
methods achieve high quality but at prohibitive computational cost
( 3000𝑥 slower). Foundation models offer computational efficiency
but produce overly generalized clusters with limited utility, a weak-
ness not apparent in our manual interpretability evaluation. This
demonstrates why rigorous interpretability benefits practical cloud
workload management; not only does it inspire confidence for prac-
titioners, but it will also allow to decouple designing similarity
metrics/embeddings from (future) downstream tasks.

5 Lessons Learned And Future Directions
This paper exposes practical challenges in analyzing time series
patterns for cloud workload management. It studies time series
similarity approaches for capturing patterns in workload signals
like query arrivals. It emphasizes the need for interpretable ap-
proaches and highlights limitations in current methods, including
foundational time series models.

5.1 Lessons Learned for Time Series Similarity
Diverse & Complex Patterns in Real-World Data. Our detailed
characterization of real-world query arrival telemetry reveals a
wide range of time series patterns and the inherent complexity they
present. While common patterns such as periodic query arrivals
are evident at a broad level, closer examination uncovers significant
variations, including offsets in periodic arrivals and interleaved
sporadic activity.

Limitations of Traditional Similarity Approaches. Through
comprehensive experiments, we demonstrate how different tradi-
tional similarity approaches emphasize different time series fea-
tures, such as amplitude, alignment, and frequency. The wide di-
versity in time series structures and workload management tasks,
however, requires complex customized feature engineering. Such
featurization, along with the interpretation of the resulting similari-
ties, poses challenges for non-experts, pointing to the opportunities
for foundational time series models.

Promise & Challenges of Foundational Models. Founda-
tional time series models, such as transformer-based architectures,
offer a promising solution to address the above complexities by
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automatically capturing key time series features in compact em-
beddings. These models thus facilitate efficient similarity searches
and various downstream tasks, such as forecasting, anomaly detec-
tion, and optimization. While decoding mechanisms provide partial
insights, a comprehensive understanding of whether these similari-
ties reflect meaningful characteristics or merely representational
limitations remains elusive. This highlights the necessity for con-
tinued research aimed at enhancing interpretability and robustly
assessing the model’s perception of time series.

Cloud workloads surge fast,
Black box models cannot see—

Hand-craft still prevails.

5.2 Call For Future Research
The complexities identified in this work underscore several critical
open questions and opportunities for future investigation.

Interpretability. The critical demand for interpretability in em-
beddings and similarity scores remains unmet for practical use in
workload management. While embeddings may emphasize specific
time series characteristics, their meaning often remains opaque—
making it difficult to trust their output, even when embedding
accuracy is high. The same challenge extends to similarity compar-
isons and other downstream tasks: without interpretability, users
lack insight into why certain patterns are considered similar, which
undermines confidence in automated decisions and limits adoption
in real-world systems.

Model Generalization vs. Specialization.When facing com-
plex and diverse time series, one key open question is whether to
improve the generalization of foundational models or specialize
them. Our empirical study reveals saturation of training loss and
insufficient representation capabilities for spiky signals. This issue
could be addressed through model architecture and training pro-
cedures that enhance the generalization of foundational models.
Alternatively, we could specialize these models through fine-tuning
or customized loss functions tailored to specific signal types, such
as bursty query arrivals or periodic CPU utilization patterns. Our
observations suggest that specialization may be the easier approach
to improve representation accuracy. However, this comes with op-
erational overheads of training and maintaining multiple models
instead of a single generalized model. Therefore, we urge the re-
search community to weigh the trade-offs between accuracy and
operational overheads and recommend including characterization
of training data to understand model applicability, providing guid-
ance or automated tools for model specialization.

Multivariate Embeddings.Multivariate embeddings present
exciting possibilities for richer workload characterizations by cap-
turing complex interrelations among individual signals from differ-
ent workload components. For instance, workload management in
database systems typically considers the interactive query arrival
signals of selects, inserts, updates, and deletes together. However,
the existing challenges in evaluating and interpreting even univari-
ate embeddings underscore the critical need for robust evaluation
and interpretation strategies that need to be extended to the more
complex case of multivariate embeddings.

Composable & Transformable Embeddings. Another key
requirement is to develop embeddings that are both composable

and transformable, enabling customization for specific workload
management tasks. Observations from this study indicate that the
perceived similarity between time series can vary significantly de-
pending on the chosen time scale or transformation, each crucial
for distinct use cases. Therefore, embedding methods must support
composability across time ranges and transformations that allow
use-case-specific emphasis on various time series features like am-
plitude, time warping, or frequency. A pertinent research question
is how to create embeddings that faithfully reflect such transfor-
mations. This could involve transforming the input and forcing
the model to reflect those changes, fine-tuning transformation lay-
ers, or even instructing the model on specific transformations. A
practical solution must also aim to minimize operational overheads.

Foundation cracks show,
Build anew with clarity–
Scale meets understanding.
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6 Appendix
6.1 Foundational Model Training
We now evaluate how accurate theMOMENT model represents the
time series of our dataset. We consider four model variants: small
vs. large and pretrained vs. finetuned. We finetune on 85% of time
series and validate on 15% diverse timeseries, including our hand-
picked customers. This setup including the finetuning procedure
follows the original setup of MOMENT. MOMENT allows decoding
its learned embedding back into a timeseries signal. We use this to
quantify representation accuracy via Mean Squared Error (MSE)
and visually inspect how the model perceives the the original time
series.

Figure 7 shows the results of all model variants for our hand-
picked timeseries in the validation set. Our key observations: (1)
The small pretrained model performs poorly (MSE: 0.72–1.3); (2)
the large pretrained model improves over small (MSE: 0.27–1.0); (3)
finetuning small model significantly improves the accuracy (MSE:
0.17–0.63); (4) finetuning the large model yields marginal gains over
pretrained (MSE: 0.26–0.81). While high-level patterns are captured,
visual inspection shows MOMENT struggles with abrupt changes
in the signal, e.g., due to spikes or the hard cut-off at 0.

To better understand the above observations, Figure 8 details the
finetuning performance—the mean squared error loss over the fine-
tuning epochs. The small model quickly reduces its loss within the

Figure 7: Visualization of original time series versus decoded
output and Mean Squared Error (MSE) of the foundational
time series MOMENT—in variants small vs. large and pre-
trained vs. finetuned.
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Figure 8: Training loss over epochs when finetuning MO-
MENT on our dataset.

first few epochs, but convergence is unstable—the best loss is 0.079
at epoch 72 but the loss oscillates. The large model also converges
with oscillation, but more slowly and to a higher loss. This suggests
diminishing returns when finetuning larger pretrained models on
small, domain-specific datasets.

To improve stability, we experimented with gradient accumu-
lation and larger batch sizes. However, neither approach led to
meaningful improvement in final loss or convergence behavior.

Take-away: Finetuning enables MOMENT to capture the shape
of our query arrival time series much better, especially the represen-
tation accuracy of the small model quickly improves. Still, both the
small and large model saturate at higher loss than in the original
training, presumably due to the abrupt nature of our time series
signal that is not well represented in the pretraining dataset.

6.2 End-to-End Time Series Clustering
Visualization

Figure 9 visualizes how different similarity approaches cluster the
same set of 25 time windows (each 5.333 days long) from our dataset.
Each column in the figure represents the time series of one customer.
Each row represents a different similarity approach. The colors indi-
cate cluster membership while grey indicates noise (time windows
not assigned to any cluster). Identical colors across columns indi-
cate that time windows from different customers are assigned to
the same cluster, i.e., are considered as a similar time series pat-
tern. Identical colors in the same column across rows indicate that
the same time window is assigned to the same cluster by different
similarity approaches.

The visualization provides several key insights: (1) hand-engineered
features produce the most refined clustering with 5 distinct clus-
ters and minimal noise; (2) DTW approaches (especially none-dtw)
create meaningful clusters but with more noise; (3) FFT with Eu-
clidean distance offers a good balance of clustering quality and
efficiency; (4) foundational models (FM) produce only 2 overly
generalized clusters; and (5) several approaches (none-eucl, z-score-
eucl, wavelet-eucl) fail entirely, classifying all windows as noise.
The figure confirms the quantitative metrics in Table 3 and demon-
strates why methods with similar ARI scores can produce qualita-
tively different clusterings in practice. Notably, for customers with
periodic time series, the clustering results are broadly consistent
across different time windows, when clusters are assigned.
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Figure 9: Visualization of time window clustering via different similarity approaches, cf. Section 4.2
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