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Motivation

[0 Graphs are everywhere.

B Social networks, computer networks, biological networks

[0 Graph databases are large and growmg rapldly in size.
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[0 Wealth of information is encoded in graph databases.

Need: Graph Matching
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Motivation

[0 Previous studies largely focus on exact graph matching.
B Assume precise graph data

B Subgraph isomorphism (NP-Complete)

[0 Real life graphs are noisy and incomplete.
B More challenging (need heuristic methods)

Node Similarity
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Need: Approximate Graph Matching




Motivation

[0 Most existing methods are applicable to small query
graphs.
B 10s of nodes and edges
[0 Supporting large queries is more and more desired.
B Protein Interaction Networks (PINs):
0 100s ~ 1000s nodes and edges

O Compare PIN of one species against other species

Need: Approximate Large Graph Matching
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Neighborhood Indexing

Index Unit?

Neighborhood

(induced subgraph of a
node and its neighbors)

Index Unit Pruning Power | Index Size
Subgraphs High © O(nk) ®
Nodes Low ® O(n) ©
Neighborhoods High © O(n) ©




Index Unit

Index Unit: Neighborhood

Which node is at the center?

[0 Node label

How many neighbors does the node have?

[0 Node degree

How do the neighbors connect to each other?

[0 NeighborConnection: # edges between neighbors
Who are the neighbors?




Index Unit

[0 Who are the neighbors?
B Naive approach: list the labels of the neighbors
0 Problem: the number of neighbors varies.
B If # labels in the problem domain is a small constant.
[0 Deterministic bit array.
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B What if the number of labels is huge?
O Bloom filter: label —"ash=> position in a m-bit array.

0 Information in the index unit
B (label, degree, nConn, nArray)




Match a Query Neighborhood

Exact Approximate group nodes based
on similarity

v Ng.label = Ng,.label v' group(N,.label) = group(Ng,.label)

v Ng.degree < Ngy.degree ¥ Ng.degree < Ngy,.degree + e
v Ng.nConn < Ny,.nConn ¥ Ng.nConn < Ng,.nConn + 6

v (NOT Ng,.nArray) v |(NOT Ng,.nArray) AND N, .nArray| < ¢
_ Q0O Q.0
AND N,.nArray = 0 Query OSQ 80 DB

O : % of neighbors of a query node with no corresponding matches in the
neighborhood of a database node

max # missing neighbors: ¢ =p (N,.degree)

max # missing nConn: 6 =¢ (¢-1)/2+ ¢ (N,.degree- ¢ )
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Index Structure

[0 Support efficient search for DB neighborhoods.
group(Ngy,.label) = group(N,.label)

B+-Tree
Index on

Ngp.degree = N,.degree — ¢ _—— (grou, degree,
Ngp-nConn = N, .nConn -6 — lnAlrrayl —

|(NOT Ng,.nArray) AND Ng.nArray| <e_ e ;

O Simple implementation in RDBMSs. e

5

B Use existing robust disk-based index Bitmap Index on

nArray
tructures in RDBMSs.
Structures >S Hybrid Index Structure
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Index Probing

[0 Probe the B+tree for group, degree and nConn

B Easy

[0 Probe bitmaps for nArrays
B Naive approach: look at each row of a bitmap

B A better approach

[0 Operate on bit slices.
O Up to 12X speedup! 1]1]0]0
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Observations

[0 Observation 1: Not every node plays the same role in

a graph.
B Node importance

[0 Observation 2: A good match should be more tolerant
towards missing unimportant nodes than missing

important nodes.
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Matching Algorithm Overview

[0 Step 1: Match the important nodes from the

query.

[0 Step 2: Progressively extends the node

matches.

Query Graph
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TALE Matching Algorithm

[0 Step 1: Match important nodes from the query.

B Select important nodes.
O Importance measure: degree centrality
[0 The percentage of important nodes: P
B Probe Neighborhood Index to match important nodes.
B For each candidate graph in the database, find the one-
to-one mappings to the important query nodes.
O Maximum weighted bipartite graph matching

'\. weight (matching neighbors
& neighbor connections)
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TALE Matching Algorithm

Step 2: Progressively extends the node
matches.
B Start from the importance node matches.
B Match “nearby” nodes of already matched nodes.
0 Not just immediate neighbors
[0 Also nodes two hops away
- gap nodes
- differences in node connectivity
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Experimental Evaluation

[0 Implementation
B C++ on top of PostgreSQL
[0 Evaluation Platform
B 2.8GHz P4, 2GB RAM, 250GB SATA disk, FC2
B PostgreSQL: version 8.1.3, 512 MB buffer pool
[0 Experimental Datasets
B BIND protein interaction networks
B ASTRAL protein structures
[0 Evaluation Measures:
B Effectiveness
B Efficiency
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Effectiveness Experiment

[0 Protein Interaction Network Comparison (BIND)

#node #edge #KEGGs KEGG Time
rat 830 942 hit coverage (sec)
mouse 2991 3347 rat vs. human
human 8470 11260 Graemlin 0 NA 910.0
TALE 6 3.2% 0.3
mouse vs. human

Graemlin 18 5.0% 16305.5
TALE 42 13.6% 0.8

# KEGGs hit: number of pathways aligned between 2 species

KEGG coverage: fraction of proteins aligned within a pathway.
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Efficiency Experiment

[0 Query increasing sized

ASTRAL datasets
B 20 queries (153.1n, 592.0e)
B Top 20 results
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Related Work

Index-based Approximate Graph Matching
B Graphfil, PIS, CDIndex, C-Tree, SAGA

B Limited approximation: Graphfil, PIS, CDIndex,
C-Tree

B For small queries: Graphfil, PIS, CDIndex, SAGA

Pairwise Graph Alignment Methods

B NetworkBlast, MaWIsh, Graemlin

B Specific to protein interaction networks
B Very slow for database search (no index)
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Conclusion

TALE = Approximate Large Graph Matching
Neighborhood Indexing

B Disk-based index using existing index structures in RDBMSs

® High pruning power
B Linear index size with the database size

Index-based Matching Algorithm

B Distinguish nodes by importance
B Match important nodes then extend to others

Experiments on Real Datasets
B Improved effectiveness and efficiency over existing methods




Questions?

Suggestions?
Thanks! ©
&

24



