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� Graphs are everywhere.

� Social networks, computer networks, biological networks

� Graph databases are large and growing rapidly in size.

� Wealth of information is encoded in graph databases.

Motivation

Need: Graph Matching



� Previous studies largely focus on exact graph matching.

� Assume precise graph data

� Subgraph isomorphism (NP-Complete)

� Real life graphs are noisy and incomplete.

� More challenging (need heuristic methods)

Motivation

Need: Approximate Graph Matching
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� Most existing methods are applicable to small query 

graphs.

� 10s of nodes and edges

� Supporting large queries is more and more desired.

� Protein Interaction Networks (PINs): 

� 100s ~ 1000s nodes and edges

� Compare PIN of one species against other species

Motivation

Need: LargeApproximate Graph Matching
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TALE: A Tool for Approximate Large
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� A Novel Disk-based Indexing Method

� High pruning power

� Linear index size with the database size

� Index-based Matching Algorithm

� Significantly outperforms existing methods

� Gracefully handles large queries and databases

� Experiments on Real Datasets

� Effectiveness

� Efficiency
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Neighborhood Indexing

� Index Unit?

Neighborhoods

Nodes Low � O(n) ☺

Subgraphs High ☺ O(nk) �

High ☺ O(n) ☺

Index Unit Pruning Power Index Size

Neighborhood

(induced subgraph of a 
node and its neighbors)
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Index Unit

� Index Unit: Neighborhood

� Which node is at the center?

� Node label

� How many neighbors does the node have?

� Node degree

� How do the neighbors connect to each other?

� NeighborConnection: # edges between neighbors

� Who are the neighbors?
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Index Unit

� Who are the neighbors?

� Naïve approach: list the labels of the neighbors

� Problem: the number of neighbors varies.

� If # labels in the problem domain is a small constant.

� Deterministic bit array.

� What if the number of labels is huge?

� Bloom filter: label —hash� position in a m-bit array.

� Information in the index unit

� (label, degree, nConn, nArray)

A   B   C   D   E

1    0   0   1   1
Neighbor Array
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Match a Query Neighborhood

Exact

� Nq.label = Ndb.label

� Nq.degree ≤ Ndb.degree

� Nq.nConn ≤ Ndb.nConn

� (NOT Ndb.nArray) 

AND Nq.nArray = 0

Approximate

� group(Nq.label) = group(Ndb.label)

� Nq.degree ≤ Ndb.degree +ε

� Nq.nConn ≤ Ndb.nConn +δ

� |(NOT Ndb.nArray) AND Nq.nArray| ≤ε

ρ: % of neighbors of a query node with no corresponding matches in the 

neighborhood of a database node

max # missing neighbors: ε=ρ(Nq.degree) 

max # missing nConn: δ=ε(ε-1)/2+ε(Nq.degree-ε)

group nodes based 
on similarity

Query                         DB
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Index Structure

� Support efficient search for DB neighborhoods.

group(Ndb.label) = group(Nq.label)

Ndb.degree ≥ Nq.degree –ε

Ndb.nConn ≥ Nq.nConn –δ

|(NOT Ndb.nArray) AND Nq.nArray| ≤ε

� Simple implementation in RDBMSs.

� Use existing robust disk-based index           

structures in RDBMSs.
Hybrid Index Structure

1 0 0 1

1 1 0 0

nArray

n0

n1

n2

n3

n4

n5

Bitmap Index on 

nArray
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Index Probing

� Probe the B+tree for group, degree and nConn

� Easy

� Probe bitmaps for nArrays

� Naïve approach: look at each row of a bitmap

� A better approach

� Operate on bit slices.

� Up to 12X speedup!

1 0 0 1

1 1 0 0
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Observations

� Observation 1: Not every node plays the same role in 

a graph.

� Node importance

� Observation 2: A good match should be more tolerant 

towards missing unimportant nodes than missing 

important nodes.



15

Matching Algorithm Overview

� Step 1: Match the important nodes from the 

query.

� Step 2: Progressively extends the node 

matches.

Query Graph Database Graph
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TALE Matching Algorithm

� Step 1: Match important nodes from the query.

� Select important nodes.

� Importance measure: degree centrality

� The percentage of important nodes: P

� Probe Neighborhood Index to match important nodes.

� For each candidate graph in the database, find the one-

to-one mappings to the important query nodes.

� Maximum weighted bipartite graph matching

query nodes nodes in a DB graph

weight (matching neighbors 
& neighbor connections)
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TALE Matching Algorithm

� Step 2: Progressively extends the node 

matches.

� Start from the importance node matches.

� Match “nearby” nodes of already matched nodes.

� Not just immediate neighbors 

� Also nodes two hops away 

� gap nodes

� differences in node connectivity
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Experimental Evaluation

� Implementation

� C++ on top of PostgreSQL

� Evaluation Platform

� 2.8GHz P4, 2GB RAM, 250GB SATA disk, FC2

� PostgreSQL: version 8.1.3, 512 MB buffer pool

� Experimental Datasets

� BIND protein interaction networks 

� ASTRAL protein structures

� Evaluation Measures:

� Effectiveness

� Efficiency
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Effectiveness Experiment

#node #edge

rat 830 942

mouse 2991 3347

human 8470 11260

#KEGGs
hit

KEGG 
coverage

Time 
(sec)

rat vs. human

Graemlin

TALE

0

6

NA

3.2%

910.0

0.3

mouse vs. human

Graemlin

TALE

18

42

5.0%

13.6%

16305.5

0.8

# KEGGs hit: number of pathways aligned between 2 species

KEGG coverage: fraction of proteins aligned within a pathway.

� Protein Interaction Network Comparison (BIND)
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Efficiency Experiment
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� Query increasing sized 
ASTRAL datasets 

� 20 queries (153.1n, 592.0e)

� Top 20 results 
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Related Work

� Index-based Approximate Graph Matching

� Graphfil, PIS, CDIndex, C-Tree, SAGA

� Limited approximation: Graphfil, PIS, CDIndex, 

C-Tree

� For small queries: Graphfil, PIS, CDIndex, SAGA

� Pairwise Graph Alignment Methods

� NetworkBlast, MaWIsh, Graemlin

� Specific to protein interaction networks 

� Very slow for database search (no index)



Conclusion

� TALE � Approximate Large Graph Matching

� Neighborhood Indexing

� Disk-based index using existing index structures in RDBMSs

� High pruning power

� Linear index size with the database size

� Index-based Matching Algorithm

� Distinguish nodes by importance

� Match important nodes then extend to others

� Experiments on Real Datasets

� Improved effectiveness and efficiency over existing methods
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Questions?

Suggestions?

Thanks! ☺☺☺☺


