

TALE: A Tool for Approximate Large Graph Matching

Yuanyuan Tian and Jignesh M. Patel University of Michigan

Motivation

□ Graphs are everywhere.

- Social networks, computer networks, biological networks
- Graph databases are large and growing rapidly in size. Growth of the KEGG Database 80000 66407 # bathways 40000 20000 41689 29921 \square 2706 0 1999 2001 2007 2003 2005 Year

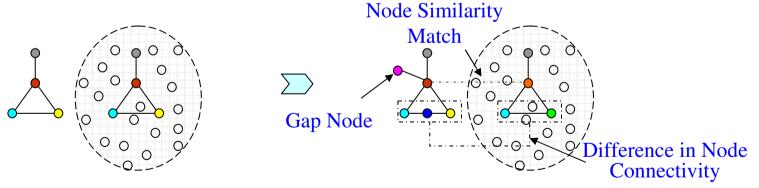
Wealth of information is encoded in graph databases.

Need: Graph Matching

Motivation

Previous studies largely focus on *exact* graph matching.

- Assume precise graph data
- Subgraph isomorphism (NP-Complete)
- Real life graphs are noisy and incomplete.
 - More challenging (need heuristic methods)



Need: Approximate Graph Matching

Motivation

- Most existing methods are applicable to small query graphs.
 - 10s of nodes and edges
- □ Supporting large queries is more and more desired.
 - Protein Interaction Networks (PINs):
 - □ 100s ~ 1000s nodes and edges
 - □ Compare PIN of one species against other species

Need: Approximate Large Graph Matching

TALE: A Tool for Approximate Large Graph Matching

- A Novel Disk-based Indexing Method
 - High pruning power
 - Linear index size with the database size
- Index-based Matching Algorithm
 - Significantly outperforms existing methods
 - Gracefully handles large queries and databases
- Experiments on Real Datasets
 - Effectiveness
 - Efficiency

TALE: A Tool for Approximate Large Graph Matching

A Novel Disk-based Indexing Method

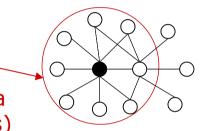
- High pruning power
- Linear index size with the database size
- Index-based Matching Algorithm
 - Significantly outperforms existing methods
 - Gracefully handles large queries and databases
- Experiments on Real Datasets
 - Effectiveness
 - Efficiency

Neighborhood Indexing

□ Index Unit?

Neighborhood

(induced subgraph of a node and its neighbors)

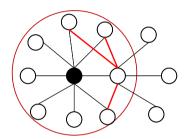


Index Unit	Pruning Power	Index Size	
Subgraphs	High 🙂	O(n ^k) ⊗	
Nodes	Low 😕	O(n) 🙂	
Neighborhoods	High 🙂	O(n) 🙂	

Index Unit

Index Unit: Neighborhood

- Which node is at the center?
 - Node label



- How many neighbors does the node have?Node degree
- How do the neighbors connect to each other?
 NeighborConnection: # edges between neighbors
- Who are the neighbors?

Index Unit

□ Who are the neighbors?

- Naïve approach: list the labels of the neighbors
 - □ Problem: the number of neighbors varies.
- If # labels in the problem domain is a small constant.

Deterministic bit array.

- What if the number of labels is huge?
 □ Bloom filter: label —^{hash}→ position in a m-bit array.
- Information in the index unit
 - (label, degree, nConn, nArray)

Match a Query Neighborhood

Exact

Approximate group nodes based on similarity

- ✓ N_q .label = N_{db} .label
- ✓ N_q .degree ≤ N_{db} .degree
- ✓ N_q .nConn $\leq N_{db}$.nConn
- ✓ (NOT N_{db}.nArray)

AND N_q .nArray = 0

✓ $group(N_q.label) = group(N_{db}.label)$

✓
$$N_q$$
.degree ≤ N_{db} .degree + ε

✓
$$N_q$$
.nConn ≤ N_{db} .nConn + δ

✓ | (**NOT** N_{db}.nArray) **AND** N_q.nArray| ≤ ε

 ρ : % of neighbors of a query node with no corresponding matches in the neighborhood of a database node

max # missing neighbors: $\varepsilon = \rho (N_q.degree)$

max # missing nConn: $\delta = \varepsilon (\varepsilon - 1)/2 + \varepsilon (N_q.degree - \varepsilon)$

Index Structure

Support efficient search for DB neighborhoods. $group(N_{db}.label) = group(N_{d}.label)$ B+-Treè Index on N_{db} .degree $\geq N_a$.degree – ε (group, degree, nConn) N_{db} .nConn $\geq N_{a}$.nConn – δ nArray 1 | n0 0 0 $|(NOT N_{db}.nArray) AND N_{a}.nArray| \leq \epsilon$ 0 0 | n1 n2 n3 Simple implementation in RDBMSs. Ш n4 n5 Use existing robust disk-based index Bitmap Index on nArray structures in RDBMSs. Hybrid Index Structure

Index Probing

□ Probe the B+tree for group, degree and nConn

Easy

Probe bitmaps for nArrays

Naïve approach: look at each row of a bitmap

- A better approach
 - □ Operate on bit slices.

□ Up to 12X speedup!

1	0	0	1
1	1	0	0

TALE: A Tool for Approximate Large Graph Matching

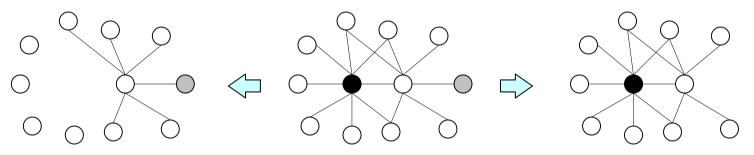
- A Novel Disk-based Indexing Method
 - High pruning power
 - Linear index size with the database size

Index-based Matching Algorithm

- Significantly outperforms existing methods
- Gracefully handles large queries and databases
- Experiments on Real Datasets
 - Effectiveness
 - Efficiency

Observations

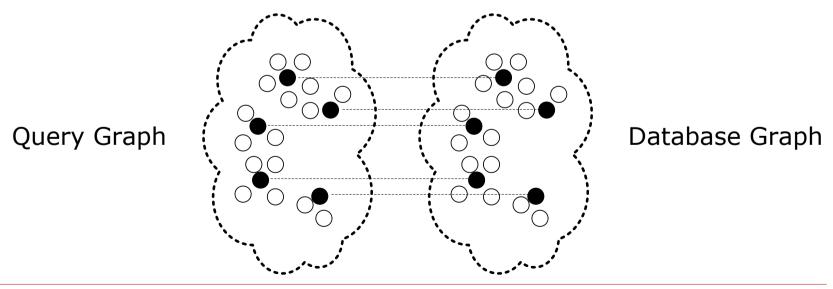
- Observation 1: Not every node plays the same role in a graph.
 - Node importance



Observation 2: A good match should be more tolerant towards missing unimportant nodes than missing important nodes.

Matching Algorithm Overview

- □ Step 1: Match the important nodes from the query.
- Step 2: Progressively extends the node matches.



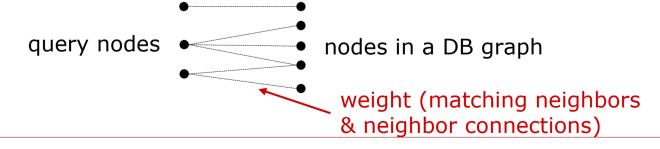
MICHIGAN

TALE Matching Algorithm

□ Step 1: Match important nodes from the query.

- Select important nodes.
 - □ Importance measure: degree centrality
 - □ The percentage of important nodes: P
- Probe Neighborhood Index to match important nodes.
- For each candidate graph in the database, find the oneto-one mappings to the important query nodes.

Maximum weighted bipartite graph matching



TALE Matching Algorithm

- Step 2: Progressively extends the node matches.
 - Start from the importance node matches.
 - Match "nearby" nodes of already matched nodes.
 - Not just immediate neighbors
 - □ Also nodes two hops away
 - \rightarrow gap nodes
 - \rightarrow differences in node connectivity

TALE: A Tool for Approximate Large Graph Matching

- A Novel Disk-based Indexing Method
 - High pruning power
 - Linear index size with the database size
- Index-based Matching Algorithm
 - Significantly outperforms existing methods
 - Gracefully handles large queries and databases

Experiments on Real Datasets

- Effectiveness
- Efficiency

Experimental Evaluation

- Implementation
 - C++ on top of PostgreSQL
- Evaluation Platform
 - 2.8GHz P4, 2GB RAM, 250GB SATA disk, FC2
 - PostgreSQL: version 8.1.3, 512 MB buffer pool
- Experimental Datasets
 - BIND protein interaction networks
 - ASTRAL protein structures
- Evaluation Measures:
 - Effectiveness
 - Efficiency

Effectiveness Experiment

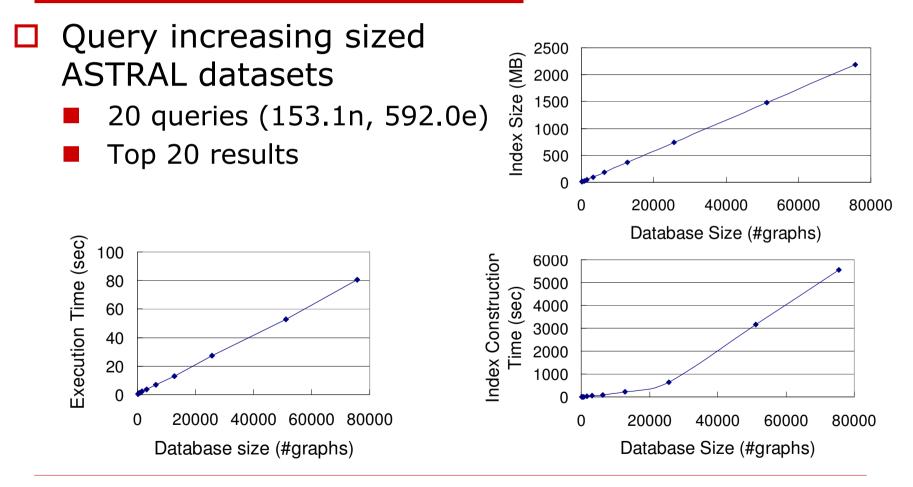
Protein Interaction Network Comparison (BIND)

	#node	#edge		#KEGGs	KEGG	Time
rat	830	942		hit	coverage	(sec)
mouse	2991	3347	rat vs. human			
human	8470	11260	Graemlin	0	NA	910.0
numan	0470	11200	TALE	6	3.2%	0.3
			mouse vs. human			
			Graemlin	18	5.0%	16305.5
			TALE	42	13.6%	0.8

KEGGs hit: number of pathways aligned between 2 species

KEGG coverage: fraction of proteins aligned within a pathway.

Efficiency Experiment



Related Work

- Index-based Approximate Graph Matching
 - Graphfil, PIS, CDIndex, C-Tree, SAGA
 - Limited approximation: Graphfil, PIS, CDIndex, C-Tree
 - For small queries: Graphfil, PIS, CDIndex, SAGA
- Pairwise Graph Alignment Methods
 - NetworkBlast, MaWIsh, Graemlin
 - Specific to protein interaction networks
 - Very slow for database search (no index)

Conclusion

- □ TALE → Approximate Large Graph Matching
- Neighborhood Indexing
 - Disk-based index using existing index structures in RDBMSs
 - High pruning power
 - Linear index size with the database size
- Index-based Matching Algorithm
 - Distinguish nodes by importance
 - Match important nodes then extend to others
- Experiments on Real Datasets
 - Improved effectiveness and efficiency over existing methods

Questions? Suggestions? Thanks! ©