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ABSTRACT
Customer demand, regulatory pressure, and engineering efficiency
are the driving forces behind the industry-wide trend of moving
from siloed engines and services that are optimized in isolation to
highly integrated solutions. This is confirmed by the wide adoption
of open formats, shared component libraries, and the meteoric
success of integrated data lake experiences such as Microsoft Fabric.

In this paper, we study the implications of this trend to Query
Optimizer (QO) and discuss our experience of building Calcite and
extending Cascades into QO components of Microsoft SQL Server,
Fabric Data Warehouse (DW), and SCOPE. We weigh the pros and
cons of a drastic change in direction: moving from bespoke QOs
or library-sharing (à la Calcite) to rewriting the QO stack and fully
embracing Query Optimizer as a Service (QOaaS). We report on
some early successes and stumbles as we explore these ideas with
prototypes compatible with Fabric DW and Spark. The benefits
include centralized workload-level optimizations, multi-engine fed-
eration, and accelerated feature creation, but the challenges are
equally daunting. We plan to engage CIDR audience in a debate on
this exciting topic.

1 INTRODUCTION
After two decades of “one size does not fit all”, we found ourselves
with a collection of high-performance engines and services that
customers had to string together to solve end-to-end application
scenarios. The response, driven by customer demand and engineer-
ing efficiency, is a convergence of several specialized engines to: 1)
operate out of a single copy of the data in the lake, 2) share compute
resources, and 3) provide single sign-on and governance experience.
Microsoft Fabric [22] represents the earliest example of this trend.
Further evidence that our industry is trying to move past siloed en-
gines is the emergence of regulator-friendly open standards such as
Parquet [6], Arrow [1], Substrait [12] and system-building libraries
such as Calcite [17], Orca [38], Datafusion [2] or Velox [35].

In this paper, we focus on the opportunity to unify and share
components in the Query Optimization (QO) layer. We build on our
own experience in building Calcite, and in evolving the Cascades
framework across SQL Server [9], Fabric DW [13], and SCOPE [19]
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Features Custom QO QO as a Library QOaaS

Innovation speed ✗ ✓ ✓
Engineering
efficiency ✗ ✓ ✓

New engine
time-to-market ✗ ✓ ✓

Cross-engine
optimization ✗ ✗ ✓

QO scalability ✗ ✗ ✓
Workload

Observability ✗ ✗ ✓

Workload
Optimization ✗ ✗ ✓

Table 1: Comparison of QO Approaches

within Microsoft1. While these efforts provided great re-use bene-
fits, we argue that: “It is time for something more!” We propose a
vision for a full-blown Query Optimizer as a Service (QOaaS) in a
unified LakeHouse ecosystem like Fabric, as illustrated Figure 1.
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Figure 1: A unified LakeHouse ecosystem with QOaaS

QOaaS moves past the library-sharing approach of Calcite or
Orca, by decoupling QO in a separate service, that interacts with
potentially multiple engines over RPC. We base our design on a
Microsoft Fabric like ecosystem, and ground our thinking with a
prototype compatible with Fabric DW and Spark. The key benefits
of QOaaS (see the comparison in Table 1) include the ability to:
1) isolate the QO from the rest of the engine query processing,
allowing for independent deployment/experimentation, 2) centrally
handle workload-level optimizations such as index/view selection
and ML-enabled QO enhancements, 3) accelerate development by
amortizing costs across engines, and 4) in a longer term, multi-
engine federation, where each query sub-plan is executed by the
most optimal engine.

The above gain requires us to tackle some hard technical chal-
lenges including: 1) the need to define an unambiguous query plan
1The Fabric DW QO is a branch of the SQL Server QO, whereas the SCOPE QO is a
fork of the SQL Server QO.
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format, capable of capturing query semantics and all their nuances2,
2) by unifying QO, the system must provide flexible cardinality
estimation, cost models, and plan search mechanisms capable of
delivering optimal plans for diverse engines3, and 3) addressing
the performance impact of interactions between different engines
and the remote service for communicating all necessary metadata
required for the QO to perform its work effectively.

While QOaaS is an ambitious vision, we discuss our thinking
and highlight our initial stumbles and successes as we investigate
the opportunity of building a commercial QOaaS. In full fairness,
this is more than an idea but less than a committed product plan.
We aim to use this paper and the live engagement with the savvy
and opinionated CIDR audience to converge our thinking–whether
to pursue it at full-speed or abandon it.

For this current QOaaS effort, we are focusing specifically on
relational analytical engines within a unified Lakehouse ecosystem.
First of all, as OLTP queries tend to be much simpler, analytical
engines have greater QO requirements that would justify a QOaaS.
Additionally, while QOaaS can work for a single data warehouse
or lakehouse, it is particularly effective in a unified Lakehouse
environment like Fabric, where multiple engines can operate on
data in a shared lake. Although QOaaS could also potentially be
applied to non-relational engines with high QO requirements, we
are initially concentrating on relational engines, as implementing a
QOaaS even for these use cases is already a significant challenge.

While federated query execution is enabled by QOaaS, it is only
one of the many benefits brought by QOaaS, as pointed out in
Table 1. We would like to differentiate QOaaS from the QOs of
federation systems, like Garlic [26], and polystore systems, like Big-
DAWG [21]. Both types of systems enable querying across multiple
data engines, with polystores specifically targeting at heteroge-
neous engines with different data models. In terms of QO, which
is the focus of this paper, each individual backend engine in these
systems retains its own QO unchanged, functioning as a black box
within the broader system. The QO component for the federated
server or polystore coordinaitng across engines primarily handles
slicing a query into subqueries and assigning these subqueries to
the appropriate engines. In contrast, our QOaaS approach decom-
poses the individual engines and unifies the QO components into
one shared QO, with the goal of improving engineering efficiency
and innovation speed. Queries executed either by an individual
engine or across engines can both benefit from QOaaS.

2 REINVENTINGWHEELS IN THE QO SPACE
Recent years have witnessed a proliferation of analytical query
engines, each with its own QO to create efficient execution strate-
gies. Although these QOs may appear different on the surface, with
variations in the number and types of operators and transformation
rules, they typically model the same relational algebra, explore
similar search spaces, and follow the same stages outlined below.

2For example, PowerBI and Fabric DW group-by sum() operations have subtle se-
mantic differences in treating categories with no entries, where PowerBI reports all
keys, and where no tuples exist a 0 sum value, while Fabric DW would omit the entry
if no records exist for that key.
3For example, DuckDB column-oriented group-by SIMD-optimized implementation
will vastly differ from Spark scale-out-over-shuffle one.

Parsing/Algebrization. The input query is parsed into an Ab-
stract Syntax Tree (AST) and transformed into an algebraic tree
of relational operators. Table and column names are resolved us-
ing metadata catalogs, and type inference annotates the tree while
removing invalid queries.

Simplification/Normalization. The input tree is iteratively
transformed into an equivalent canonical form using simplification
rules, applied via top-down, bottom-up, or fixed-point schemes.

Pre-exploration. This phase involves tasks performed after sim-
plifying the input tree and before cost-based exploration. Needed
statistics are loaded or scheduled for creation if absent.

Cost-based exploration/implementation. In this phase, phys-
ical alternatives for the input operator tree are generated, compared,
and the best one is chosen. The process involves three main pil-
lars: the search space of alternatives, the enumeration strategy, and
the cost model. Systems may use dynamic programming for join
orders and specialized approaches for other tasks. The Cascades
Optimization Framework, used in multiple industrial optimizers
[9, 13, 16, 17, 19, 32, 38], relies on the Memo data structure for
compact representation and optimization tasks for generating al-
ternatives via transformation rules.

Post-optimization. In this phase, peephole transformations are
applied to the final plan, and query execution structures are created
for the selected plan.

Additional evidence that modern QOs share significant function-
ality comes from optimizer libraries like Calcite [17] and Orca [38],
which are reused by multiple engines. At Microsoft, the SQL Server
QO has been reused for SCOPE [19] and Fabric DW [13] with minor
extensions. These examples also demonstrate that QOs can function
as an independent building block rather than an integral part of
the monolithic data engine.

3 STEPS TOWARDS QOAAS
In this section, we describe our initial efforts to realize the QOaaS vi-
sion within a unified LakeHouse ecosystem like Fabric. As a testing
vehicle for the feasibility of QOaaS, we decided to adapt the Unified
Query Optimizer (UQO) [18], which is the QO for Fabric DW, to
optimize queries for other engines, building on our experience of
evolving SQL Server QO to optimize other systems. This decision
was also influenced by our initial evaluation of both Fabric DW and
Fabric Spark engines, which share significant commonalities. With
this context, we focus on three key challenges for QOaaS using
UQO: exchanging query plans in and out of the QO (Section 3.1),
adapting the optimizer to work effectively with different engines
(Section 3.2), and adjusting the cost model to accommodate for
implementation differences in various engines (Section 3.3).

3.1 Standardizing Plan Specification
For a QOaaS to operate across multiple engines, a unified, cross-
language, and cross-engine plan specification is essential. As recom-
mended in [36], we adopted Substrait [12] to standardize interme-
diate plan representation across engines within Fabric. Substrait is
an open-source project that provides a standard, language-neutral
specification for relational algebra, supporting various serialization
formats like Protobuf and JSON. It allows extensions for custom
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operations and includes a robust ecosystem of libraries and tools
for validation and implementation.

We have been working to replace engine-specific plan represen-
tations with Substrait across Fabric engines such as DW, Spark, and
Power BI. Our current implementation has achieved support for:
1) various SQL operations such as scan, filter, joins (including inner,
outer, semi, and anti-semi), grouping, and sort, 2) a wide range of
expressions, including scalar (arithmetic, boolean, cast) and aggre-
gate functions, and 3) both simple types such as different precision
integers, floating point, and date-time, as well as compound types
such as decimal and fixed- and variable-length character strings.
This support is sufficient to cover queries from TPC-H and TPC-
DS, as well as certain internal Microsoft workloads. With Substrait
serving as the cross-engine plan representation, we can now mix
and match different QOs and runtimes for a query.
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Figure 2: Optimizing Spark queries with UQO

3.2 Optimizing Spark Queries with UQO
To test the concept of QOaaS, we focused on the two analytics
engines within Fabric, DW and Spark. Currently, the Spark query
optimizer primarily relies on non-cost-based optimizations, with
limited cost-based optimization (CBO) features, such as join re-
ordering and broadcast-vs-shuffle join decisions. We have long
been wondering about the potential advantages of replacing the
Spark optimizer with UQO, which encompasses 255 CBO rules. To
explore this, we built a prototype of QOaaS using UQO to optimize
Spark queries, as depicted in Figure 2, and evaluate the effectiveness
of using such a QOaaS.

To manage complexity and expedite development, we initially
targeted queries that use operators and functions supported by
both DW and Spark. To optimize Spark queries effectively with
UQO, our prototype needed to address two main categories of mis-
matches. First, there are physical operator mismatches. The set
of physical operators supported by DW and Spark differs, which
means that some physical plans generated by UQO may not be exe-
cutable in Spark due to missing corresponding physical operators.
For instance, since Spark currently lacks support for indexes, any
physical operators that rely on indexes in DW are not supported in
Spark. To address this, we disabled optimization rules in UQO that
generate unsupported operators. We denote this modified UQO as
UQO* in Figure 2. Second, there are feature support mismatches.
Some Spark features, such as Hive-style partitioning and distributed
Bloom filters, were not supported in the version of UQO we were
experimenting with. As a result, even if UQO* produces a valid

plan for Spark after disabling certain optimization rules, the plan
might not leverage these advanced features, leading to sub-optimal
performance. To address this issue in an initial prototype, we delib-
erately avoided the engineering-heavy task of extending UQO* to
cover Spark’s specific physical implementation details. Instead, as
illustrated in Figure 2, we stack UQO* with a modified Spark QO,
denoted as Spark QO*, which complements UQO* with the missing
Spark optimization rules. In this prototype, a Spark query is first
parsed and compiled by Spark QO*; then the unoptimized logical
plan is handed over to UQO* via the Substrait standard specification,
and optimized by UQO* to produce an optimized logical plan either
with or without physical hints (more details below); subsequently,
this plan is passed back to Spark QO*, via the Substrait specification,
and re-optimized, with limited logical optimization and physical
planning, to produce the final physical plan that can be executed
in Spark.

This QOaaS prototype implements two alternative approaches
for optimizing Spark queries. 1) QOaaS-v1: UQO* generates opti-
mized logical plans, and Spark QO* further refines these plans and
selects the physical implementation. 2) QOaaS-v2: UQO* produces
optimized logical plans with hints on some physical implementa-
tion choices (e.g. choosing broadcast vs. shuffle or hash join vs. sort
merge join). These hints are embedded in the Substrait plan using
its extensibility system. Spark QO* is then modified to consider
these hints and generate the physical plans suggested by UQO*.
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Figure 3: Execution time of representative MSSales queries
on Spark runtime with different QOs
Evaluation. We tested both QOaaS approaches with a real an-
alytical production workload from Microsoft’s internal revenue
reporting platform, MSSales, on a Spark Fabric cluster. This work-
load consists of 627 tables stored as Parquet files in OneLake, total-
ing around 5TB. The queries contains regular patterns (i.e., many
queries share the same template with different parameter values)
and are particularly join-heavy.We selected 8 representative queries
with varying numbers of joins for the experiment.

As shown in Figure 3, QOaaS-v1, where UQO only contributes
logical optimization, generally provides performance comparable
to Spark QO. However, for 40-way joins, it improves performance
by nearly 2×. This improvement is primarily because UQO pro-
duces a better join ordering than Spark QO. With additional hints
on the physical implementation, QOaaS-v2 significantly improves
performance for most queries further. The more sophisticated cost-
based optimization in UQO often produces better physical plans
overall. Even with this simple QOaaS prototype, we already observe
great potential. Another advantage of bringing UQO to Spark is
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its built-in support for view matching. This automatically enables
materialized view (MV) support for Spark, allowing Spark queries
to use MVs created by DW, a feature currently absent in Spark.

We also tested QOaaS-v2 on TPC-H SF1000 (1TB). The queries
in TPC-H are less complex than those in MSSales, and Fabric Spark
has already been highly tuned for this benchmark workload. As
a result, the runtime with QOaaS-v2 plans is very comparable to
that with Spark QO, with an average difference within 6%. How-
ever, for Query 5, we observed a 1.5× slowdown with QOaaS-v2.
This slowdown occurs because the optimization decisions made by
UQO before Spark’s optimization prevent Spark QO from apply-
ing the Bloom filters optimization effectively. This indicates that
adding optimizations retroactively is not ideal, as noted by previous
works [18]. Considering all optimizations in UQO’s search space
exploration and cost decisions jointly would lead to a better plan.

3.3 Recalibrating and Tuning the Cost Model
Like most major QOs in use today [9, 13, 17, 19, 32, 38], UQO em-
ploys a formula-based cost model, where the total cost is formulated
as a weighted sum of the costs of basic operations on the estimated
data items. Two integral parts of the cost formula are the estimated
cardinality, which represents the number of rows processed by
each operation, and the cost parameters, which capture the relative
impact of hardware and software factors in the cost model, such as
sequential disk IO, random disk IO, memory usage of a hash table,
CPU cost of evaluating a predicate, etc. Like many other QOs, the
cost parameters in UQO use predefined, hard-coded values.

In the context of QOaaS, it is unrealistic to expect that the same
hard-coded parameter values will always produce optimal plans
across engines, given the different architecture and implementation
details. In fact, even for Fabric DW, depending on the hardware and
software configuration, these cost parameters should be recalibrated
(e.g. the relative impact of CPU and IO costs will differ across
hardware generations and SKUs).

As a result, we focused next on automatically tuning the cost
parameters for the UQO cost model leveraging MLOS [10, 20], a
general-purpose, ML-powered infrastructure and methodology for
continuous, robust, and trackable systems optimization. It has been
applied to auto-tune many systems within Microsoft [29].

We started by tuning 60 cost parameters in UQO for a single
node backend in DW. To help reduce the search space, we utilized
LlamaTune [27] to reduce the search dimension to 10. We also
experimented with various tuning optimizers in MLOS (e.g., FLAML
[39], SMAC [31], GridSearch) and settled on FLAML.
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Figure 4: Runtime performance with default vs tuned param-
eters on TPC-H for three scale factors
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Figure 5: Runtime performance with default vs tuned param-
eters on a subset of MSSales data

Figure 4 shows the total runtime of TPC-H queries for three scale
factors with the default and MLOS-tuned parameters. TPC-H has
also been heavily tuned for DW, so the performance improvement
with the tuned parameters is not very significant. In contrast, we
witnessed substantial performance improvements, up to 8×, for the
MSSales workload, shown in Figure 5. Note that we used a 10GB
subset of the MSSales data to keep the tuning process manageable.

These preliminary results demonstrate that recalibrating the
cost parameters for the given hardware is necessary to produce
good query plans. However, the tuned parameters are not trans-
ferable across workloads. Running the MSSales workload with the
tuned parameters from TPC-H SF10 yields almost the same run-
time performance as the default parameters. Conversely, running
TPC-H SF10 with the tuned parameters from MSSales results in a
dramatic performance degradation, up to 7×. Several factors might
contribute to this problem. First, MSSales queries contain many
joins and unions but do not cover all operators in DW, causing the
tuned parameters to overfit for a subset of operators and not work
well for TPC-H queries containing other operator types. Second,
cardinality estimation plays an important role in the cost model;
with the large number of joins in MSSales, the tuned parameters
might over-compensate for cardinality estimation errors.

Considering these observations, we have started working on
two concurrent efforts: 1) designing a benchmark workload with
good coverage of all operators and their various code paths, and
2) injecting true cardinalities into the cost model, leveraging the
work in [30], tomitigate the problem of cardinality estimation errors
in the tuning process. In addition, we plan to utilize our QOaaS
prototype introduced in Section 3.2 to tune UQO cost parameters
for the Spark runtime.

It is also worth noting that even if we fail to develop a universal
set of parameters that performs well across all workloads, tuning
for specific workloads may still be valuable. In fact, we should
allow instance-based optimization, like the many learning-based
QO works [28, 33, 34, 37, 40, 41], in the design of QOaaS.

3.4 Key Lessons Learned
We have gleaned important insights from our initial attempt:

• A standard plan specification is essential for QOaaS.
• The “patchy” approach of combining two QOs is suboptimal
for QOaaS, as demonstrated in Section 3.2. Instead, QOaaS
should explore all possible optimization opportunities to
produce an optimal plan.

• The cost model of a QOaaS must consider the engine capa-
bilities and generate engine-specific costs accordingly.
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• A QOaaS should allow instance-based optimization, embod-
ied by the recent advancements in ML-based QO research.

• Fiddling with a production-level customized QO, like UQO,
for QOaaS requires significant engineering effort, even for
simple proof-of-concept prototypes.

These insights have prompted us to rethink and propose a new
design for QOaaS, which will be discussed in the next section.

4 THE QOAAS PROPOSAL
Building on our initial experiments and preliminary results, we
believe QOaaS is a promising idea. In this section, we sketch out
an architectural proposal for realizing the QOaaS vision.
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4.1 Overview
The high-level goals for QOaaS include: serving multiple engines
based on their capabilities, ease of extension to support new en-
gines, the capability to optimize across engines even with hybrid or
federated plans, and the flexibility to incorporate the latest ad-
vanced QO features, including various ML-based QO enhance-
ments [28, 33, 34, 37, 40, 41] that learn from historical data and
proactively improve query performance.

Figure 6 shows the proposed QOaaS architecture, striving to
meet these goals. First, QOaaS adopts a standard plan specification,
like Substrait [12], to ensure cross-engine operability. At its core,
there are three phases of optimization: Simplification, which ap-
plies rewrite rules without a cost model; CBO Exploration, which
explores the plan search space with the help of a cost model; and
Post Optimization, which applies engine-specific customizations.
We modularize each fundamental QO building blocks and make
each QO component extensible, similar to the general-purpose QO
libraries like Calcite and Orca. However, we enhance extensibility
by introducing three additional components into QOaaS: a Query
Insight Store, an External Tuner Plugin module, and a Config/Action
Store. These components collect past query plans and runtime sta-
tistics, allow external processes to use them for tuning, and then
feed the tuning configurations or actions back to the core QO com-
ponents for advanced QO enhancements.

Finally, the servicification of a unified QO allows us to elastically
scale up and out (with multiple instances) the QO independently

from the runtime engines, ensuring the efficiency and resilience of
the optimization process with dedicated resources. In fact, individ-
ual components within QOaaS can also be made into standalone
services. To further ensure efficiency, caching themetadata accessed
by the QO becomes critical, as numerous network round trips and
large payloads can cause significant overheads. The evaluation and
evolution of the QO also become easier with the ability to perform
A/B testing and run different versions of QO instances, enabling
faster and easier innovation, development, and testing.

Note that QOaaS also necessitates a unified metadata representa-
tion across engines. Lakehouses already leverage open table formats
such as Delta Lake [8], Apache Hudi [3], and Apache Iceberg [4],
along with interoperability tools like Apache XTable [15], to unify
the management of both data and metadata versioning, as well as
other essential functionalities within data lakes. Complementing
this, file formats like Puffin [5] introduce mechanisms for storing
versioned statistics through flexible, arbitrary blobs. Engines are
not required to interpret or update these blobs today, but there is
clear potential to standardize blob specifications (e.g., histograms,
sketches) and enable multi-language bindings via formats like Pro-
tobuf, facilitating access from multiple engines. Building on these
advancements, recent proposals like OpenHouse [11], Apache Po-
laris [7], and Unity Catalog [14] focus on unified operational meta-
data catalogs to manage table definitions, schemas, and governance.
While formalizing such standards is beyond the scope of this pa-
per, these efforts reflect the broader momentum toward unified
metadata in the Lakehouse ecosystem.

4.2 Core Components
Operators and Rules. Operators (logical or physical) and rules
are the fundamental building blocks of a QO. While many opera-
tors and rules are commonly shared across different engines, some
are specific to certain engines. To make QOaaS aware of which
operators and rules are supported by each engine, we add a engines-
property to each operator and rule, indicating in which engine(s)
it is supported. We also add new exchange operators that support
cross-engine data exchange (including transfer and transformation
if needed). Similar to any other physical property like sort order,
the engines-property will be enforced during optimization.

Simplification Phase. This phase applies a series of simple log-
ical transformations to the unoptimized logical plan, like constant
folding and filter pushdown. Based on the engines-property, QOaaS
only applies those rules supported by the target engine(s).

CBO Exploration Phase. In this phase, QOaaS applies cost-
based optimizations using two modularized sub-components: Cost
Model (CM) and Cardinality Estimation (CE). During the CBO ex-
ploration, based on the engines-property, QOaaS only applies those
rules supported by the target engine(s). Besides the normal input for
a cost model, the CM component in QOaaS also takes a target engine
as an additional input. Depending on the target engines, it might
employ different cost models. For instance, it might use different
cost parameters for Spark compared to those for DWwhile employ-
ing the same cost formula, or it could utilize an entirely different
cost formula, or even a non-formula-based cost model. If a plan
needs to be optimized across multiple engines, costs for different
engines for the same (sub-)plan are computed and compared during
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exploration, and exchange operators might be enforced based on
the engines-property. This phase employs both logical and physi-
cal optimization rules. However, since we do not want to burden
the CBO with too much physical implementation details of each
engine (e.g. the whole-stage code generation in Spark), this phase
only produces optimized logical plan with all necessary physical
annotation. The physical annotation includes physical operators
(e.g. hash join vs sort merge join) and the chosen target engines.

Post Optimization Phase. We handle all engine-specific im-
plementation details in this phase. Logical plans with physical
annotations are transformed into physical plans, incorporating all
necessary implementation details, including the chosen target en-
gine for each operator. If a hybrid plan is produced, the physical
plan includes all necessary information to execute the hybrid plan.

4.3 New Components
The core components of the QOaaS architecture share resemblance
with the modularized components in a general QO library like
Calcite or Orca, but the three new components, Query Insight
Store, External Tuner Plugin, and Config/Action Store, are unique
for QOaaS. They enhance the existing QO with observability across
engines and open it up for advanced new augmentations.

The introduction of these components draws inspiration from
past efforts in extending the SCOPE QO (also based on SQL Server
QO) with a service-oriented architecture [24] for computation
reuse [25] and learned QO components [34, 37, 40, 41], collabo-
ratively conducted by the Gray Systems Lab and the SCOPE team.

Query Insight Store. All learning-based QO improvements [28,
33, 34, 37, 40, 41] require training data to begin with. In order to
allow novel ML-based QO components pluggable into the QOaaS,
we need to first enable observability of past workloads. The Query
Insight Store is introduced to automatically capture a history of
queries, plans, and runtime statistics (such as execution time and
actual cardinality) across engines in the unified LakeHouse. These
data are collected from the query logs, QOaaS itself, and the teleme-
tries emitted by the various engines in the LakeHouse.

External Tuner Plugin. This component is the door that opens
QOaaS for trusted external processes or services which can lever-
age the information in Query Insight Store for QO enhancement
and then store the new configuration or action for the QOaaS in
the Config/Action Store. This component offers a set of APIs to
access data in the Query Insight Store using both pull and push
mechanisms, with optional filters for retrieving specific subsets of
observables. Additionally, it offers APIs for storing information into
the Config/Action Store.

Config/Action Store. The new configurations or actions gen-
erated by an external tuner process or service are stored in the
Config/Action Store, so that the core components of the QOaaS can
access them and utilize them for better optimization.

4.3.1 Examples of Extensions to QOaaS. We now provide some
examples of utilizing the three new components to extend QOaaS
with more advanced features.

Example 1: Cost model parameter tuning. To enable the cost
model parameter tuning (see Section 3.3), we can plugin an external
process through External Tuner Plugin, which accesses the past
queries in the Query Insight Store and selects a set of representative

queries for each target engine. Then it calls MLOS to conduct offline
tuning for each engine with the selected workload. The final tuned
cost parameters are then stored into the Config/Action Store as
updated defaults. Finally, the Cost Model component in QOaaS can
be extended to use these different cost parameters for each engine.

Example 2: Learned cardinality estimator. A QOaaS that
observes all engines in a unified LakeHouse gives us an advantage of
leveraging the rich statistics collected frommultiple engines to train
a better ML-based cardinality estimator. We can use a pluggable
external ML training process to build models using the plans and
true cardinalities from the Query Insight Store. The learned models
can be stored back into the Config/Action Store, which are finally
used by an extended Cardinality Estimation module. This process
can be run periodically to update the models with new data.

Example 3: Pipeline optimization. A QOaaS offers a unique
opportunity for pipeline optimization, particularlywhen the pipeline
involves jobs across different engines. By observing all queries in a
pipeline, QOaaS can conduct a global analysis to optimize the entire
pipeline, similar to [23]. For instance, an upstream query in Spark
might produce data without specific ordering or partitioning, while
multiple downstream jobs in DW could benefit from a particular
order or partitioning scheme. In this case, QOaaS can recommend
adjustments to the Config/Action Store, enabling the optimizer to
automatically add a sort or partition operator to the producer job.

4.4 Challenges and Risks
A coin has two sides. Naturally, the proposed QOaaS architecture
comes with its own set of challenges and risks.

QO complexity: While customizability and extensibility are
generally advantages for QOaaS, they also increase the software
complexity of the QO.

Learning curve: Consolidating the QO developers into one
team is beneficial, but it requires the QO developers to understand
the overall requirements of multiple engines.

Coordination across teams: The cross-engine optimization
capability of QOaaS requires close coordination among the relevant
teams. This includes agreeing on data collection for the Query
Insight Store, establishing protocols for using information in the
Config/Action Store, and designing any new APIs and extensions.

Communication overheads: Separating the QO into a remote
service can increase communication costs from metadata transfer
between engines and the QO. Factors like caching and session main-
tenance also come into play. Central metadata services can reduce
these overheads but require further coordination of standards.

Innovation hurdle: While QOaaS can accelerate innovation
by allowing the core components to be shared across multiple
engines–meaning a single change can benefit multiple engines–it
also presents a challenge. Changes that improve one engine could
negatively impact others. As a result, rolling out updates requires
more thoughtful design and rigorous testing to ensure compatibility
and stability across engines. However, the potential for easy A/B
testing provides an opportunity to mitigate this issue by allowing
for careful validation before widespread deployment.

5 OPEN DISCUSSION AND DEBATE
Current industry trends have pointed us to a future with a more
unified and composable datamanagement architecture. In this spirit,
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we conjectured an ambitious vision of a QOaaS that rules all the
query engines in a converged LakeHouse ecosystem like Microsoft
Fabric. Is this a good idea? Will it work? We do not have a definitive
answer yet. But we started with concrete baby steps towards this
grand vision. Based on trial and error with some real production
systems on Fabric and past successes from related efforts, we have
sketched out a preliminary design for QOaaS. The goal of this design
is not to provide a solution but rather to spark a conversation and
debate. Perhaps the idea of one QO to rule them all is a fantasy.
However, maybe a QOaaS for a few very similar engines (e.g. Fabric
DW and Spark) is both feasible and beneficial. We invite the CIDR
community to critique and discuss with us on this exciting topic.
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