
WiSer: A Highly Available HTAP DBMS for IoT
Applications

Ronald Barber1, Christian Garcia-Arellano2, Ronen Grosman2, Guy Lohman1,
C. Mohan1, Rene Muller4, Hamid Pirahesh1, Vijayshankar Raman1,

Richard Sidle1, Adam Storm2, Yuanyuan Tian1, Pinar Tozun3, Yingjun Wu1
1IBM Almaden Research Center 2IBM Analytics

3IT University of Copenhagen 4Bern University of Applied Sciences BFH

Abstract—In a classic transactional distributed database man-
agement system (DBMS), write transactions invariably synchro-
nize with a coordinator before final commitment. While enforcing
serializability, this model has long been criticized for not satis-
fying the applications’ availability requirements. When entering
the era of Internet of Things (IoT), this problem has become
more severe, as an increasing number of applications call for
the capability of hybrid transactional and analytical processing
(HTAP), where aggregation constraints need to be enforced
as part of transactions. Current systems work around this by
creating escrows, allowing occasional overshoots of constraints,
which are handled via compensating application logic.

The WiSer DBMS targets consistency with availability, by
splitting the database commit into two steps. First, a PROMISE
step that corresponds to what humans are used to as commitment,
and runs without talking to a coordinator. Second, a SERIALIZE
step, that fixes transactions’ positions in the serializable order,
via a consensus procedure. We achieve this split via a novel data
representation that embeds read-sets into transaction deltas, and
serialization sequence numbers into table rows. WiSer does no
sharding (all nodes can run transactions that modify the entire
database), and yet enforces aggregation constraints. Both read-
write conflicts and aggregation constraint violations are resolved
lazily in the serialized data. WiSer also covers node joins and
departures as database tables, thus simplifying correctness and
failure handling. We present the design of WiSer as well as
experiments suggesting this approach has promise.

I. INTRODUCTION

For decades, database management systems (DBMSs) have
separated on-line transaction processing (OLTP) from on-line
analytics processing (OLAP) in distinct systems. This has
been more an engineering compromise than a desirable feature:
OLTP systems typically modified small portions of the database
and demanded low latency, whereas OLAP systems typically
queried large swaths of the database in read-only mode and
demanded high throughput. But the promise of classical DBMS
transaction theory and its serializability concepts is that all
transactions – even with arbitrarily complex queries embedded
within them – can be handled correctly (i.e., serializably) by
a single DBMS, so that applications can program against a
single-system image, even while running in a distributed system
with high concurrency.

Increasingly over the last few years, the Internet-of-Things
(IoT) applications are gaining their popularity. They have begun
to demand this ideal of doing analytics on the same system

as transaction processing, and even doing analytics within the
transactions themselves [26], [24]. This is known as hybrid
transaction and analytical processing (HTAP). However, even
with significant advances in the speed and capacity of the
underlying hardware, true HTAP in a distributed environment
is extremely challenging. If a transaction, running on any node,
can query the entire database state up to that point in time
(in serializable order) and subsequently make a modification
that might touch the entire database, then that transaction will
effectively need to lock the entire database while it runs. Not
only can such transactions run for a long time, but their locking
behavior excludes other transactions, killing concurrency and
slowing performance to a crawl.

Database sharding across distributed nodes somewhat eases
the problem by partitioning the database into shards and
similarly partitioning the transaction workload, so that most
transactions are local to a single shard. But often aggregation
constraints spanning multiple nodes need to be enforced, and
this usually forces escrowing transactions while aggregating
across shards.

Let us consider an online shopping application that is at the
core of the TPC-C and TPC-E transactional benchmarks and
captures the full HTAP challenge. It has two tables:
• Products(productId, unitPrice): containing real

goods (as in TPC-C), securities (as in TPC-E), or services
(e.g., a slot on a delivery truck).
• Orders(orderId, productId, qty, price): containing

orders for a given quantity of a given product, at a given price.
Customer orders express quantity as a negative number, while
restocking orders have positive values for quantity.

Now consider we want to run the following two transactions
on these tables:
• NewOrder: Look up current prices for a few products, and

insert rows into Orders table with a certain order ID.
• UpdatePrice: Change the unit price for some products in

the Products table.
Note that, unlike TPC-C, we do not have an “Inventory”

table holding a materialized running overall quantity of
product; instead, the transactions need to check an aggregation
constraint ensuring that the sum of all quantities cannot be
negative for any product. The lack of “Inventory” table is
common in modern IoT applications. As NewOrder can come

from edge devices (e.g., mobile phones) from across the
world, maintaining such an “Inventory” table could easily
lead to centralized contention, caused by both 2-phase locking
(2PL) and 2-phase commit (2PC). In such an application, it is
impossible to escrow the aggregation constraints; In addition, it
is also not realistic to shard the database, as these aggregation
constraints are not “shardable”.

Instead of maintaining aggregation views in the DBMS,
these constraints are invariably delegated to application logic.
This brings us to the limitations expressed by the well-known
CAP theorem by Brewer, which states that it is impossible
for a distributed data store to simultaneously provide more
than two out of the following three guarantees: Consistency
(C), Availability (A), and tolerance to Partitions of the network
connecting nodes (P).

A. CAP Theorem within DBMS

Brewer observes that applications always prioritize availabil-
ity, even applications that modify complex distributed state with
many concurrent actors [8], [7]. A transaction cannot always
wait to access the full global state, and cannot synchronously
modify this state in a way that is immediately reflected globally.
Instead, there is complex compensatory logic in the application
to handle constraint violations due to concurrent activity.

A transaction is a contract between two parties, e.g., between
a customer and a retailer. When the customer clicks the “submit”
button, they are committing, not just in the DBMS sense but
also in the legal contract sense, to buy these products at these
prices; conversely, the retailer is committing to supply.

But, the serializable order of these transactions is established
after commit. In a retail application, this could be the sequence
in which orders are filled by consuming inventory or space on
a delivery truck. Constraints can and do get violated all the
time, and are resolved by compensation, e.g., via an apologetic
email about a “back-ordered” item and perhaps a coupon.

Thus, commit always has “asterisks” (contingencies): the
parties agree that the contract is contingent on the global state
(reflecting all concurrent transactions, in serializable order) not
differing too much from the state seen at commit. Banks usually
state this asterisk explicitly, e.g., by listing their algorithm for
processing overdrafts. The problem with this application logic
is that it complicates reasoning about database atomicity or
durability.

B. HA and HTAP within DBMS

The Wildfire-Serializable (WiSer) project seeks to provide
both high availability (HA) and HTAP within the same
distributed DBMS without sharding, thus extending atomicity
and durability to the handling of consistency contingencies.
WiSer is a follow-on project to the Wildfire research project,
which developed high-throughput HTAP at snapshot isolation
and has been commercialized as the IBM DB2 Event Store [5],
[4]. Now we first give an overview of the novel way in
which WiSer commits a transaction to achieve this significant
improvement.

1) Symbolic and Resolved Commit: A transaction in WiSer
can run on any node, even on poorly connected nodes. Commit
is split into two stages:
• PROMISE stage, after which the deltas (i.e., state changes)

of a transaction X are persisted durably and the transaction is
“symbolically committed”. There are three “symbolic” entities
in the delta that are resolved lazily: (1) the position of X’s
delta in the serializable order; (2) X’s conflict status – whether
the queries in the transaction saw the latest state (per the
serializable order); and (3) X’s constraint status – whether the
database state up to X satisfies aggregation constraints. These
symbols capture the contingency semantics: if X confronts
access conflicts or violates constraints, X will roll back and
the application can specify one or more compensatory actions.
• SERIALIZE stage, to pick the position of the X’s delta

in the serializable order, which is done via consensus. This
stage inherits the HA and liveness properties of that consensus
protocol.

WiSer has further asynchronous stages, to resolve X’s
conflict violation, to resolve X’s constraint violation, and to
“publish” X’s delta in a query-efficient form. But X’s status is
deterministic after the SERIALIZE stage. Thus, an application
running on a poorly connected node, as long as it can get to
serialize, can always run a query to find the transaction status.

2) HA HTAP via Consensus: Conceptually, doing HTAP
with HA is just a consensus problem. Imagine a database that
is just a huge Raft [23] log. Transactions append deltas to this
log. In addition to these changes to user tables, each delta must
also capture additional metadata and cluster state in this log:
• Transaction snapshot and read-sets: the queries in a

transaction X are run as of a snapshot, which is a prefix
of this log. To resolve X’s conflicts, we need to know this
snapshot and the nature of X’s queries to compute whether
the query result would have changed due to deltas between
the snapshot that X sees and the position of X’s delta. Often
this “read-set” information is stored in custom data structures
and lock tables, making it harder to reason about correctness
in failure cases.
• Node departures and (re-)joins: say a node N “hangs” for

a while, and so its peers evict it. How do they do that, while
atomically stopping that node from adding deltas to the log?
We need to add the “node departure” event to the log as well.

Figure 1 illustrates this data model. If we had such a
consensus log, then in theory we have HTAP and HA –
transactions will run serializably just by querying the log, and
they will make progress even in poorly connected situations,
following the HA behavior of the consensus protocol. Of
course, such a grand consensus log would be too slow, both
in throughput and latency. This in turn would cause too many
rollbacks, because longer-running transactions are more likely
to have read-write conflicts.

WiSer instead picks the other extreme. As Figure 2 shows,
WiSer has a consensus log that tracks only the history of the
state changes. All the other state is in database tables, and our
challenge is to get consensus on changes to this other state
using only the change log.

Database State
(in log format, i.e. as composition of deltas)

Deltas @ Node A Deltas @ Node B Deltas @ Node C Cluster Configuration
(nodes, replicas, etc.)

Database Schema
(tables, indexes, etc.)

System State
(in log format, i.e. as composition of deltas)

RAFT

Fig. 1: If all state changes (database and system) are in a durable,
consistent, HA consensus log, we have a serializable system.

R
A

FT

Delta History

Database and System States
(in table format)

Fig. 2: WiSer puts only the history of state changes in a Raft log,
and stores all other information in database tables.

3) High Throughput Scale-out: WiSer’s design of resolving
conflicts and constraints after serialize also gives a significant
throughput benefit.

PROMISE is a local operation, with replication for durability
alone, and does no locking, so it scales out quite readily;
SERIALIZE is a consensus operation, whose cost is independent
of the transaction load. We have an elected SERIALIZER (or
leader), who appends the log-sequence number (LSN) ranges
to a broadcasted file every N time intervals, where N is chosen
based on the desired latency. Each serialization picks the serial
order for all the new transactions, across all nodes, that are
available to SERIALIZE at that time.

Thus, the key scalability challenge is in the conflict resolution
step performed after SERIALIZE, to resolve the symbolic fields.
Like Calvin [29], WiSer’s database state is deterministic upon
SERIALIZE. So constraints and conflicts are resolved on a
non-changing database state. This allows conflict resolution to
be done at high throughput, and to be trivially scalable.

4) Efficiency of Aggregation Constraints: In the previous
online shopping application, suppose NewOrder transaction had
to compute the inventory (via an aggregation query) and verify
that it will remain positive after this order. The query will take
so long to run that the resulting transaction will surely conflict
with some UpdatePrice transaction that snuck through in the
meantime. This is why TPC-C uses materialized aggregation
views, but of course they involve sharding.

WiSer instead uses lazy CONSTRAINTRESOLVERS to resolve
constraints. They run the aggregation as a query each time,

so that NewOrder transaction is not burdened with having to
update inventories and can scale easily. The CONSTRAINTRE-
SOLVERS keep up with the transaction rate because they run as
streaming queries, continually streaming the serialized, conflict-
resolved deltas through streaming queries to verify aggregation
constraints.

C. Paper outline

Section II describes the design of WiSer, focusing just on
getting to the serial order. Section III and Section IV discuss
how WiSer handles conflict and constraint resolution. We
describe the system status and experiment results in Section V.
Section VI reviews related work and Section VII concludes
the paper.

II. DESIGN

We model a database as a logical chain of state modifications,
called deltas. The chain is in time order, that is, smaller prefixes
of the chain correspond to earlier states of the database. These
state modifications are made by programs called transactions
that logically read the current database state (the chain prefix
up to that modification), and accordingly apply transaction
logic to do the modification*. Each transaction runs local to a
node, but may query the database state across nodes. We call
the deltas produced at each node as a subchain and the database
chain is an interleaving of these subchains. WiSer performs
background replication and hardening of each subchain, as
described later.

Deltas @ Node A Deltas @ Node B Deltas @ Node C

𝑨𝟏

𝑨𝟑

𝑨𝟐

𝑩𝟏

𝑩𝟐

𝑩𝟑

𝑪𝟏

T
im

e

𝑩𝟑’s snapshot

𝑪𝟏’s snapshot

Fig. 3: Transactions run at three nodes. A transaction only see deltas
made before their snapshot.

Figure 3 shows an example with three nodes, A,
B, C, and transactions’ deltas produced at these nodes:
A1, A2, ..., B1, ..., C1, The database state is the composition
of deltas that come in time order: A1 → B1 → B2 → A2 →
B3 → C1 → A3....

Content of a Delta. WiSer allows only one kind of state
modification: an upsert of a row to a table. An update-by-key
is treated as a query to get the prior row content, followed by

* Application programs further need that transactions must be serialized in
an order that respects the user time at which they were executed. We defer
this problem until Section II-A1.

an upsert of the modified contents. Deletes are updates that set
an isDeleted field. A transaction X can run many queries,
and do many (or zero) upserts. The delta encapsulates not just
these upserts, but also the read-set of X – the read queries the
transaction X ran. Logically, the queries in X should read the
database chain up to X; that is, X shall see any updates that
happen before it. But in practice, the queries in X read a prefix
of this chain, called X’s snapshot: as shown in Figure 3, B3

can observe the delta made by A1, but does not see that made
by A2, which happens after the snapshot. If these query results
can change due to intervening deltas (between X’s snapshot
and X), X must roll back. Therefore we add the read-set and
the snapshot, as a serialization sequence number, to the delta.

WiSer represents transaction deltas in log format, as a
Parquet [1] row-group per modified table, all concatenated
together into a byte-string. Read-sets are represented as upserts
against a ReadWriteSet table, whose format we explain in
Section III.

Consensus for Serial Order of Writes. WiSer uses
Raft [23] for achieving consensus on this serial order.
But we do not directly put these deltas, or even the
metadata, such as the range of log sequence numbers
(LSNs) they span, onto a Raft log. Instead, our Raft log
only contains one entry each time a new SERIALIZER
(or leader) is elected. This log holds a Serializers ta-
ble, with schema (SerializerNodeID, SerializerSeqNum,
StartingBatch), which is initialized to a single row (0, 0, 0)
at database creation (e.g., node A is the first leader). Nodes
are assumed to have unique IDs. SerializerSeqNum is an
increasing number 0, 1, 2, ... which is increased when a new
SERIALIZER is elected, and StartingBatch is an offset into
a separate SerializeFrontiers table.
SerializeFrontiers holds the serial order of deltas. Each

row corresponds to a serialization batch, and contains the node
ID originating a batch, and the LSN range (only the upper
bound) of the deltas in that batch. Nodes repeatedly run batches
of transactions, harden their deltas, and send the LSN range
to the current SERIALIZER. The SERIALIZER picks the serial
order and records it by appending to SerializeFrontiers
table. By inspecting the tail of SerializeFrontiers table,
a query can determine what is serialized across the whole
database.

SerializeFrontiers table is implemented as a list of files:
a SERIALIZER with node ID N and sequence number S writes
to file named SerFront.N.S (this file is lazily replicated to
all nodes). Upon a failure and/or a network partition, multiple
nodes can think they are the SERIALIZER, but the Raft log
Serializers picks the winner – the row with maximum
SerializerSeqNum, with ties broken by picking the earliest
entry.

Visibility and Conflict Rollbacks. Of course, transactions
do not just do blind writes. They run queries (including both
reads and writes) as well. As explained in Figure 3, all queries
within a transaction see a common prior state, called its
snapshot. This raises two challenges:

• Visibility: the transaction snapshot needs to be recent
enough (not too stale), highly available (when individual nodes
are down), and often needs auxiliary structures (indexes) to
perform acceptably.
• Read-write conflicts: after determining the serializable

order (via consensus), WiSer need to roll back all transactions
whose reads have been changed in value between the seen
snapshot and the serialization point. As discussed above, WiSer
append the read-set of each transaction to its delta. This allows
precise determination of read-write conflicts.

Section III describes how we address both these challenges.
Note that we do not call out write-write conflicts (concurrent
transactions updating rows with the same key) separately. In
WiSer, a write of a row into a table with a defined primary
key automatically performs a read of that row (i.e., all writes
are upserts), thus handling all conflicts as read-write.

Constraint Rollbacks. State modifications must also respect
aggregation constraints, such as the rule in the online shopping
application that inventory for each product must stay positive.
We require aggregation constraints to be algebraic (that is,
involving sums, counts, and averages, but not medians), so as
to allow parallel as well as incremental computation.

Even with algebraic aggregates, constraint resolution is
challenging because aggregates are generally not monotonic.
For example, a batch of transactions may start with some orders
that exceed the available inventory, and then a restocking, and
then some more orders. Section IV describes how we tackle
this challenge, and presents a parallel algorithm for incremental
constraint resolution.

A. Lazy Transaction Resolution

The design presented above involves a bunch of background
tasks that happen in parallel with transaction execution:
replicating deltas, serializing them, resolving conflicts, and
resolving constraints. As these background tasks progress, they
take a transaction through various stages, which we now detail.

Stage 1: PROMISE. A transaction submitted by a client is
first assigned to a subchain, and accordingly sent to a node.
Clients can give a hint as to where to run a transaction, that
is, based on what rows the transaction is inserting, to get a
partitioning that queries can exploit. But this is just a hint:
every transaction can modify the entire database.

The transaction delta is appended to a node-local log, which
is implemented as a a lock-free list of blocks. WiSer asyn-
chronously and automatically replicates this log to replica nodes.
Promise completes when a quorum of replicas has received and
hardened the log, which is tracked via heartbeats. PROMISE
needs no global cluster communication; AP applications stop
at this stage.

Stage 2: SERIALIZE. Nodes continually inform an elected
SERIALIZER of their log growth in the form of LSN ranges.
The SERIALIZER repeatedly picks a node and publishes its
recent delta to the global serial order, as discussed earlier. Other
serial orders are also acceptable, such as ordering by the local
commit timestamps. This policy serializes entire batches of

changes from each node in a deterministic manner, similar to
Calvin [29].

The database state up to the serialization frontier is deter-
ministic. Each delta has two symbolic fields:
• Conflict status: Transactions may roll back, due to read-

write conflicts. But since the read-set is embedded in the
delta, this resolution is deterministic. We use a table called
Rollbacks (appended to by the CONFLICTRESOLVER), to
cache this resolution.
• Constraint status: The CONSTRAINTRESOLVER

lazily checks aggregation constraints and appends to a
ConstraintFailures table. Queries use these two tables,
which are essentially materialized views, to efficiently view
the latest serialized database state.

Applications requiring strict serializability can stop at
SERIALIZE stage. WiSer does wait for publish and constraint
resolution so that it can give a transaction status to the client,
but this can time-out. The semantics upon such a time-out is
identical to that of time-out at commit in a classical DBMS.

Stage 3: CONFLICT RESOLVE. A background CONFLIC-
TRESOLVER uses the read-sets embedded in transaction deltas
(across all nodes) to check if the value of any of these reads
has changed by the time the transaction was serialized. In our
current implementation, the SERIALIZER performs the role of
CONFLICTRESOLVER as well.

Stage 4: PUBLISHED. A background PUBLISHER runs at
each node to make the serialized data efficiently accessible to
point queries.

Stage 5: CONSTRAINT RESOLVE. A background CON-
STRAINTRESOLVER continually reads the conflict-resolved
deltas, across all nodes, to verify aggregation constraints. It
is at this point that the transaction status can be returned to a
client.

Stage 6: GROOM TO CLOUD. Publisher writes out very
small blocks, because we need low latency. This is too
expensive for OLAP, so we perform another round of data
reorganization to consolidate blocks and to migrate them to
(less expensive) cloud storage.

1) Strict Serializability: Applications may expect more than
serializability: if a transaction T1 returns to the application at 10
am, a transaction T2 issued at 10.01 am to a different node must
see T1’s writes. This is called strict serializability. This stricter
guarantee is readily available in WiSer, provided the application
waits until its original transaction reaches SERIALIZE stage.
By definition, any successful transaction (and query) submitted
after that point must see all serialized changes, so will see the
original transaction. Of course, if the original transaction ran on
a poorly connected node and the application timed-out before
SERIALIZE, it has to keep polling to check if its transaction
did get serialized successfully.

B. Visibility and Efficient Publish

Once a transaction has been serialized, it needs to be visible
to any subsequent query. Technically, the query can read
SerializeFrontiers table, accordingly contact individual
nodes for segments of their local log, and thus scan the

entire history of database deltas. This, with lookups (antijoins)
into Rollbacks and ConstraintFailures tables, gives full
visibility to the serialized state.

But OLTP applications have very strict latency requirements,
and timeouts are perceived as failures. Scanning the entire log is
prohibitively slow. This is why every node runs a PUBLISHER
that scans the recent appends to the log at that node and
converts them to a query-efficient form. This involves three
pieces:

• Organizing data by tables: PUBLISHER separates the deltas
by table (recall that every modification is an upsert), and
appends them to per-table blocks, still in Parquet format. Every
row is timestamped with a serializer sequence number (SSN)),
which is an identifier for each transaction in the serial order. The
SSN is used by queries to antijoin with ConstraintFailures
table to remove entries from transactions that failed aggregation
constraints (checking constraints happens after publish).

• Removing deltas from conflict rollbacks: PUBLISHER also
performs an antijoin with Rollbacks table to remove all rows
from transactions that hit read-write conflicts.

• Updating indexes: OLTP queries often do highly selec-
tive (“point”) lookups that need indexes to be efficient, so
PUBLISHER has to update these as well. WiSer partitions the
primary key index the same way as the data, so that update
is also a local operation. We use an LSM-based indexing
structure [22] so that incremental inserts are efficient and incur
low latency even on large tables. Maintaining secondary indexes
in WiSer is a more expensive, shuffle-like data movement, so
we expect to maintain only a limited number of secondary
indexes at PUBLISH stage. WiSer implements the HERMIT
technique [32], [33] to reduce the storage consumption caused
by secondary indexes.

Experimentally we find PUBLISH stage to be the throughput
bottleneck for WiSer, and so PUBLISH is done in parallel, across
all nodes. This means publication into tables can happen out of
serial order. So we maintain a PublishFrontiers table, whose
schema is identical to SerializeFrontiers. Each row of this
table contains a node ID and an LSN up to which log entries
from that node have been published. Queries access published
tables (and primary indexes) to access all content up to the
minimum publication frontier (across all nodes). Beyond that
(until the serialization frontier), queries need to scan logs. Most
transactions avoid this scan by waiting until the publication
frontier catches up to their snapshot, which they picked up by
reading SerializeFrontiers at transaction start. In this way,
they only need to scan logs if they have very tight latency
requirements.

One thing that PUBLISH does not do is table repartitioning:
all the data ingested at one node stays at that node. Clients can
carefully route transactions to respect any desired clustering
properties. For example, they may send a transaction that inserts
a fact row to a node based upon the hash of the primary key
or based on geography. PUBLISH simply converts logs to table
format, local to each node.

C. Node Departures and Re-Joins

WiSer has a Nodes table that contains the list of nodes.
Thus node join events get serialized just like other database
modifications.

Node departures from the network are not supported directly.
If a node becomes unresponsive, its peers cannot directly evict
that node, because all the transactions that reached Promise
on that node must still be serialized. This is handled by the
node replicas. When the node re-joins the cluster, it gets a new
node ID.

III. CONFLICT RESOLUTION

Conflicts in WiSer are resolved after we have determined a
serial order. Thus the resolution problem is simple: the reads
in a transaction X saw a snapshot that is earlier than where its
delta fits in the serial order. X’s delta includes X’s read-set
and X’s snapshot (seen SSN). So the CONFLICTRESOLVER
needs to traverse the database chain of deltas, starting from
the prior resolved point, and verify for each delta whether its
read-set could have changed in value due to intervening deltas
(between X’s snapshot and X). If it could have changed, then
X is added to Rollbacks table. X is stored as a transaction
ID in Rollbacks table: SSNs are assigned later, at Publish,
only for the successful transactions.

Note that this process can give false positives – excess
rollbacks, for two reasons. First, read-sets and write-sets are
tracked approximately as we describe below. Second, in our
data structure it is expensive to remove the writes of a rolled-
back transaction, so a transaction can roll back due to conflicts
with another one, which rolled-back for other reasons. This
behavior is similar to the way deadlocks are typically handled,
and applications are used to retrying transactions upon such
roll-backs.

A. Representation of Read Sets

WiSer represents read-sets as entries in a ReadWriteSet
table. This “all state is in tables” principle means that a
transaction’s delta naturally incorporates its read-set as well.
Queries are allowed to selectively read data by specifying
conjunctive equality predicates on one or more columns, or
range predicates (for table scan queries, the read set is escalated
to the full table). For the common case of equality predicates,
we compute a single 64-bit hash value over the key, thus easily
handling different data types and multi-column predicates. For
range predicates we store the boundaries of the range.

Our current implementation of WiSer unifies the role of
CONFLICTRESOLVER and SERIALIZER. Thus each node run-
ning transactions replicates ReadWriteSet to the SERIALIZER
node, along with its regular heartbeats (the one containing LSN
ranges of recent additions to its log).

B. Representation of Writes

To resolve conflicts, the read-set of a transaction X needs to
be compared against all writes in the serialization order between
X’s snapshot and X . Recall that PUBLISH timestamps every
row with its SSN. Thus this comparison can be done by an

index lookup when available, and if not then via a table scan
over recent data (WiSer maintains a min-max synopsis on each
block for each column, so this is not terribly inefficient).

Still, to get greater efficiency in conflict resolution, the
SERIALIZER caches recent writes in memory directly. When a
transaction X is during execution, the read-set of X is placed
in ReadWriteSet as discussed earlier. In addition, the primary
keys of rows written by X are also placed in ReadWriteSet.
Notice that the reads are represented logically (e.g., as key
ranges), whereas writes are enumerated row-by-row. As the
SERIALIZER receives writes, it maintains a list of hash tables.
These hash tables map hash(key) onto the latest SSN when that
key was modified (using the same function to map arbitrary
composite key values onto a 64-bit hash as we did for the
reads).

The SERIALIZER streams all read-sets it receives, looking
for conflicts in the recent writes. A read conflicts with a write
only if (a) the key-range of the read spans the key of the write,
and (b) the SSN of the write is greater than the snapshot of
X .

These writes are maintained as a linked list of hash tables to
facilitate eviction. Each hash table holds writes within a range
of SSNs. So periodically we drop hash tables for SSN ranges
that are older than most transactions.

C. Catching Phantoms from Range Predicates

Queries with range predicates are challenging to run seri-
alizably because of phantoms. The read-set for such a query
is a range of key values, but the DBMS must guard against
concurrent inserts of any value in that range. Typically this is
done by placing a “next-key” lock on the index tree structure –
i.e., a guard on the values just beyond the two boundary values
of that range [20]. The trouble with this approach is that it is
efficient only when the index is memory-resident. The space
taken to check for conflicts is proportional to the database size.

WiSer handles conflicts due to range predicates very similarly
to the case of equality predicates. When there is a range
index defined on a column, recent writes are cached at the
SERIALIZER as a in-memory tree of column values (not hashes).
This is also a list of trees, organized by ranges of SSNs, much
like the hash tables. Conflict detection is done by probing
read-sets into these trees, and checking any matching writes
for SSNs beyond the snapshot of the read-set.

IV. CONSTRAINT RESOLUTION

We have now built up enough machinery to discuss how
aggregation constraints are checked. These constraints are
checked after conflict resolution and after publish, who has
stamped each row with the SSN (its position in the serial
order).

Logically, constraint resolution is a walk through the
published data in SSN order, from the prior resolved point all
the way up to the latest published point. The CONSTRAINTRE-
SOLVER maintains a running aggregate, and we only support
incrementally computable, algebraic aggregation constraints.
The constraint is specified as a predicate on the result of the

aggregation. In the online shopping application, the aggregation
is to compute the sum of quantities grouped by product IDs,
and the predicate is to check whether the aggregated result is
larger than or equal to 0.

The CONSTRAINTRESOLVER can run queries repeatedly to
update the running aggregate, each time selecting data in the
range from the prior resolved SSN to a value t, where t is
gradually increased until it hits a constraint violation.

But every transaction creates a new SSN, so this approach is
far too slow. We want constraints to be evaluated on batches of
transactions, corresponding to the batches that were serialized
from each node. The challenge is that aggregates are generally
not monotonic: just because aggregation constraints are not
violated after incorporating an entire batch of transactions,
we cannot assert that the constraints were not violated at
some intermediate point (for example, a bunch of customer
orders might have depleted inventory to be negative, and then
a restocking transaction might have been serialized).

A second design goal is to do parallel constraint resolution,
in two different forms:
• Source parallelism: We want the bulk of aggregation to

be performed at the nodes running the OTLP transactions, that
reduces data movement and also gives significant parallelism.
• Resolver parallelism: The running aggregation state for

constraint enforcement can be large: for example, it is the
running inventory of each product in a retail application. So
we want individual resolvers to focus on subsets of products.

A. Partial Constraint Evaluation

WiSer supports partial constraint evaluation to reduce
computation complexity.

Let us consider a setting with three nodes, each with
multiple batches of transactions. The CONSTRAINTRESOLVER
repeatedly picks up one batch from each node to resolve (recall
that SerializeFrontiers lists the batches). It first pushes
down to each node a partial aggregation query, which is derived
from the constraint (e.g., compute the sum of quantities grouped
by product IDs, in the online shopping application).

Next, the CONSTRAINTRESOLVER uses the partial aggre-
gation results from each node to compute prefix sums (per
the serial order) for the value of the aggregate at the start
of each batch. If the prefix sum after any batch violates the
constraint, the CONSTRAINTRESOLVER reduces that batch’s
contribution to be one that makes the constraint just satisfied.
For example, if the prefix sum before and after a batch is 12 and
-5, respectively, then the CONSTRAINTRESOLVER artificially
inflates the prefix sum after that batch to 0. This is not to abort
the whole batch; instead, it is only to avoid polluting the prefix
sums for other batches. In effect, the CONSTRAINTRESOLVER
is delegating to the nodes the responsibility of keeping the
constraint satisfied by rolling back any transactions that cause
violations.

After that, the CONSTRAINTRESOLVER communicates these
prefix sums to each node, and asks it to re-evaluate the
aggregation query, except this time with a modified aggregation
function. This new query runs the same group-by, but initializes

its aggregation hash table with the prefix sum from the
CONSTRAINTRESOLVER. The aggregation scans the input in
SSN order (this does not involve an extra sort, because the
rows were published in that order). As the query maintains the
running aggregate it continually applies the constraint (e.g.,
inventories should stay positive), and surgically identifies and
excludes individual transactions that cause constraint violation.

As a side-effect of this query, each node now adds rows to
the ConstraintFailures table – these rows contain just the
SSN of the constraint-violating transactions.

Notice that excluding these transactions will cause the prefix
sums to change, but this is not communicated back to the
CONSTRAINTRESOLVER. After all, removing transactions that
caused constraints to be violated only moves the running
aggregate in a beneficial direction, so it is safe for other nodes
(checking other batches) to ignore this effect.

Constraint resolution is the last stage of transaction process-
ing. Queries do antijoins with ConstraintFailures to avoid
seeing changes from transactions that fail constraint resolution.
Transactions that reached PROMISE but failed conflict resolution
or constraint resolution are aborted transactions.

V. PERFORMANCE EVALUATION

WiSer is the next version of the Wildfire research proto-
type [5]. It is a HTAP DBMS that currently supports ingest,
via Apache Spark and via a custom API; queries, directly via a
SQL dialect, as well as ones pushed-down from Spark, and now
multi-statement transactions. The last feature is the focus of
this section. Transactional changes are replicated and hardened
to a quorum of nodes. Tables can optionally have a primary
key index on one or more columns, and this index supports a
mix of equality and range predicates. All tables and logs are
organized as Apache Parquet blocks. We use the parquet-cpp
writer.

All experiments in this section are run in a Docker environ-
ment, on a machine cluster with 28 nodes and 1.6 TB DRAMs
in total. Writes are hardened to PCI-e attached SSDs with
fsync. We execute one transaction thread in each node; the
background operations such as serialization, conflict resolution,
and publication, are all implemented on separate nodes from
those running transactions.

A. Throughput with No Conflicts

Our first experiment investigates the basic transaction pro-
cessing throughput in WiSer, without considering conflicts or
rollbacks. Transactions are run up to SERIALIZE. CONFLIC-
TRESOLVER does nothing, because there are no conflicts. We
do not run PUBLISH for this experiment.

Our workload consists of just the NewOrder transaction from
the online shopping application discussed in Section I, run
repeatedly, with no think-time, and no aggregation constraints.
Products table has 10,000 items, with an index on productId
column. Each transaction looks up the current price of 10
products and inserts an order containing those 10 products into
Orders table. The values in OrderId column are generated as

0

200

400

1 4 8 12 16 20 24

Th
ro

ug
hp

ut
 (

K
 tp

s)

Number of NewOrder Transaction Nodes

w/ serialization
w/o serialization

Fig. 4: NewOrder transaction throughput as a function of nodes, with
and without serialization.

sequential numbers, and there are no price updates, so in this
experiment there are no conflicts.

Figure 4 shows the transaction throughput we obtain with
this simple workload, and the scaling. Notice that at 24 nodes
we are inserting 3.5 million rows/s into Orders table, and
correspondingly doing 3.5 million lookups/s into the index on
Products table. In this setting, the X-axis is the number of
nodes running the NewOrder transaction. We have a separate
node running the SERIALIZER and CONFLICTRESOLVER.
Notice also that we scale well; our system has pretty much no
contention, except for the log writes (which is implemented as a
lock-free linked list of blocks). The same plot also shows what
happens if we turn off serialization: the effect is negligible.

Note that each transaction implicitly also generates 10 reads
and 10 writes, which are tracked and sent to the SERIALIZER.
From profiling we verify that most of the time goes into this
tracking of read-write sets.

B. Throughput with Conflicts

Next, we add conflicts, by introducing price updates for the
products. We run a UpdatePrice transaction every 100 ms,
and that updates the price for a certain number of randomly
chosen products. This introduces read-write conflicts because
the price that a NewOrder transaction looks up might become
stale by the time it goes to SERIALIZE stage.

Figure 5 and Figure 5 show the NewOrder transaction
throughput, for both issued and committed transactions, as
a function of the number of nodes executing NewOrder transac-
tions. Recall that there is a separate node for serialization and
conflict resolution, and the UpdatePrice transactions are issued
in another thread. We plot this at two price update volumes:
where we update 10 prices in each UpdatePrice transaction,
and where we update 20 prices in each UpdatePrice transac-
tion.

Notice that the issued and committed throughputs are almost
identical. We measure about 1% rollback rate when we update
10 prices at a time, and 2% when we update 20 prices at a
time.

There are 10,000 products, and each transaction is looking
up 10 random products. Our SERIALIZER picks up batches

0

200

400

1 4 8 12 16 20 24

Th
ro

ug
hp

ut
 (

K
 tp

s)

Number of NewOrder Transaction Nodes

Issued transactions
Committed transactions

Fig. 5: NewOrder transaction throughput as a function of nodes, with
UpdatePrice transaction size set to 10.

0

200

400

1 4 8 12 16 20 24
Th

ro
ug

hp
ut

 (
K

 tp
s)

Number of NewOrder Transaction Nodes

Issued transactions
Committed transactions

Fig. 6: NewOrder transaction throughput as a function of nodes, with
UpdatePrice transaction size set to 20.

of transactions to serialize roughly every 100 ms. Thus,
if the SERIALIZER keeps up perfectly with the transaction
rate, each NewOrder transaction will overlap with about one
UpdatePrice transaction (in the sense that the snapshot that
the NewOrder sees will be behind its serialization point by
about one UpdatePrice transaction).

This expected behavior matches the rollback rate well. When
an UpdatePrice updates 10 prices, a given product has a
10/10000 or 0.001 chance of getting updated. So the chance
that a transaction will commit is (1− 0.001)10, or about 0.99.
Likewise, when an UpdatePrice updates 20 prices, the chance
that a transaction will commit is (1− 0.002)10, or about 0.98,
which matches our observed rollback rates.

C. End-to-End Throughput

Our next experiment looks at the end-to-end transaction
throughput. We add the PUBLISHER, and hence what we
measure is the throughput of published transactions. We have
one PUBLISHER per (logical) node, so we need as many
PUBLISHER nodes as NewOrder nodes. Thus this experiment
scales only up to 12 nodes. (12 nodes for NewOrder, one for
UpdatePrice, one for SERIALIZER and CONFLICTRESOLVER,
12 for PUBLISHER). Figure 7 shows the effect of adding
publish on the system throughput. There is about a 70% hit
on throughput, and our scaling is affected. PUBLISHER has to
write data to Parquet blocks, and we find this to be a bottleneck.

0

0.5

1

1 2 4 6 8 10 12

Th
ro

ug
hp

ut
 R

at
io

Number of NewOrder Transaction Nodes

w/ publish w/o publish

Fig. 7: NewOrder transaction throughput ratio as a function of nodes,
with and without publish.

1

10

100

1000

10000

1 2 4 6 8 10 12

La
te

nc
y

(m
s)

Number of NewOrder Transaction Nodes

w/ publish w/o publish

Fig. 8: NewOrder transaction latency as a function of nodes, with and
without publish.

D. Latency Analysis

Our final experiment looks at transaction latency. We
rerun the full experiment, with NewOrder and UpdatePrice
transactions, as well as SERIALIZER and CONFLICTRESOLVER,
and PUBLISHER. This time we measure the average NewOrder
transaction latency, until PUBLISH and SERIALIZE stages.
Figure 8 plots this latency as a function of the number of
NewOrder threads. Observe that latency to serialize is in the
tens of ms, and this is the minimum latency until a query can
access the transaction’s changes (by reading the log). Going
to publish pushes the latency to about one second, this is due
to overheads in forming Parquet blocks.

VI. RELATED WORK

WiSer builds on and borrows hugely from the large volume of
literature on transaction processing, where both shared-nothing
and shared-storage models have been heavily studied [9], [11].

After many efforts on NoSQL databases that downplayed the
importance of consistency, the last decade has seen a renewed
interest in systems that provide strongly-consistent transactions
over large-scale distributed systems, across partitions and
replicas. One type of distributed DBMS, represented by IBM’s
Spinnaker [27] and Google’s Spanner [10], adopts 2PC to

coordinate distributed transactions and exploits consensus
protocols like Paxos [18] or Raft [23] to synchronize replicas
during transaction execution. In Spanner, write transactions
consult a lock server, resembling classical shared-nothing
DBMSs.

Another approach, taken by systems like Calvin [29] and
FaunaDB [14], is to use a deterministic execution model. These
DBMSs coordinate transactions within a pre-processing phase.
In this phase, the DBMS must extract the write-set from the to-
be-executed transaction, and accordingly choose a serial order.
WiSer, like Calvin, tries to come up with a serial order, and
then efficiently do post-processing on the deterministic state.
But unlike Calvin, WiSer does not pre-process transactions
and thus can support transactions that are not pre-analyzable
stored procedures.

Many modern DBMSs attempt to do analytics with trans-
actions [24]. HyPer [17] is a modern main-memory DBMS
that targets efficiently supporting OLTP and OLAP workloads
in the same memory space. It leverages multi-version concur-
rency control (MVCC) and precision locks to achieve fully
serializable transaction processing without blocking on-the-fly
analytical queries. Similar to HyPer, Peloton [25] also leverages
MVCC [30] to isolate on-line transactions from analytical
queries, but it also leverages hybrid storage layout to better
support different types of queries [3]. Focusing on modern
hardware, Appuswamy et al. [2] studied the case for developing
HTAP DBMSs by exploiting the power of both CPUs and GPUs.
A number of commercial systems also claim HTAP features,
such as SAP HANA [13] and IBM DB2 Event Store. SQL
Server introduced their enhancements for hybrid workloads
in 2016 [19]. By improving support for column-store indexes,
SQL Server can enable real-time analytics concurrently with
transactional processing.

DBMSs have long leveraged sharding techniques to store
data across multiple nodes. Sharding simplifies scaling, but
does bring in distributed transactions, which can significantly
degrade system scalability. Harding et al. [15] performed an
experimental evaluation of distributed concurrency control
protocols. Some systems use transaction chopping to serialize
transactions [34], [21], [31]. H-Store/VoltDB [16], [28] uses
partition-level locks to reduce the overhead of distributed
operations. Other systems try to avoid data partitioning. For
example, Hyder [6] exploits SSDs to scale DBMSs in a shared-
flash setting, whereas FaRM [12] uses RDMA and non-volatile
DRAM to avoid user-level partitioning.

VII. CONCLUSIONS AND FUTURE WORK

The distributed systems community has developed consensus
protocols mostly independently from the database community’s
struggles with distributed transactions. We have described one
approach to exploiting consensus as the underlying mechanism
for transaction serialization, and shown it provides two key
benefits: higher availability during the application’s interaction
with the running transaction (the promise step), and greater
scaling and easier enforcement of aggregation constraints after
serialization.

WiSer comes at a time when demand for HTAP and real-time
analytics is exploding. Yet, OLTP systems are complex and
well-entrenched “mission-critical” pieces of applications. So
we have an uphill task to penetrate this market, requiring
that we massage our ’promise-serialize’ step to fit with
existing applications, equal or surpass the plethora of must-have
OLTP features (meeting existing isolation semantics, handling
referential integrity, etc.), and demonstrate value from pulling
compensation logic out of applications.

WiSer’s design of putting all state into tables, and having a
tiny consensus piece, may also help in Byzantine settings.
Blockchain systems are to some extent bypassing and re-
inventing many aspects of classical OLTP. We want to explore
whether casting OLTP as a consensus problem will make
it easier to provide higher security, timestamping, and non-
perturbation guarantees within existing DBMSs.

REFERENCES

[1] Apache Paquet. https://parquet.apache.org/.
[2] R. Appuswamy, M. Karpathiotakis, D. Porobic, and A. Ailamaki. The

Case For Heterogeneous HTAP. In CIDR, 2017.
[3] J. Arulraj, A. Pavlo, and P. Menon. Bridging the Archipelago between

Row-Stores and Column-Stores for Hybrid Workloads. In SIGMOD,
2016.

[4] R. Barber, C. Garcia-Arellano, R. Grosman, R. Mueller, V. Raman,
R. Sidle, M. Spilchen, A. Storm, Y. Tian, P. Tozun, et al. Wildfire: Fast
HTAP on a Loosely-Coupled System. In HTPS, 2017.

[5] R. Barber, M. Huras, G. Lohman, C. Mohan, R. Mueller, F. Özcan,
H. Pirahesh, V. Raman, R. Sidle, O. Sidorkin, et al. Wildfire: Concurrent
Blazing Data Ingest and Analytics. In CIDR, 2016.

[6] P. A. Bernstein, C. W. Reid, and S. Das. Hyder-A Transactional Record
Manager for Shared Flash. In CIDR, 2011.

[7] E. Brewer. CAP 12 years Later: How the rules have changed. IEEE
Computer, 45, 2012.

[8] E. Brewer. NoSQL: Past, Present, and Future. In QCon SF, 2012.
[9] C. Mohan and B. Lindsay and R. Obermarck. Transaction management

in the R* distributed database management system. In TODS, volume 11.
[10] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,

S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, et al. Spanner:
Google’s globally distributed database. TOCS, 31(3), 2013.

[11] David DeWitt and Jim Gray. Parallel Database Systems: The Future of
High Performance Database Systems. In CACM, volume 35.

[12] A. Dragojević, D. Narayanan, E. B. Nightingale, M. Renzelmann,
A. Shamis, A. Badam, and M. Castro. No Compromises: Distributed
Transactions with Consistency, Availability, and Performance. In SOSP,
2015.

[13] F. Farber, N. May, W. Lehner, P. Grobe, I. Muller, H. Rauhe, and J. Dees.
The SAP HANA Database âĂŞ An Architecture Overview.

[14] M. Freels. FaunaDB: An Architectural Overview. 2018.
[15] R. Harding, D. Van Aken, A. Pavlo, and M. Stonebraker. An Evaluation

of Distributed Concurrency Control. PVLDB, 10(5), 2017.
[16] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik,

E. P. Jones, S. Madden, M. Stonebraker, Y. Zhang, et al. H-Store: A
High-Performance, Distributed Main Memory Transaction Processing
System. PVLDB, 1(2), 2008.

[17] A. Kemper and T. Neumann. Hyper: A hybrid oltp&olap main memory
database system based on virtual memory snapshots. In ICDE, 2011.

[18] L. Lamport. The Part-Time Parliament. TOCS, 16(2), 1998.
[19] P.-Å. Larson, A. Birka, E. N. Hanson, W. Huang, M. Nowakiewicz,

and V. Papadimos. Real-Time Analytical Processing with SQL Server.
PVLDB, 8(12), 2015.

[20] C. Mohan. ARIES/KVL: A Key-Value Locking Method for Concurrency
Control of Multiaction Transactions Operating on B-Tree Indexes. In
VLDB, 1990.

[21] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting More
Concurrency from Distributed Transactions. In OSDI, 2014.

[22] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The Log-Structured
Merge-Tree (LSM-Tree). Acta Informatica, 33(4), 1996.

[23] D. Ongaro and J. K. Ousterhout. In Search of an Understandable
Consensus Algorithm. In USENIX ATC, 2014.

[24] F. Özcan, Y. Tian, and P. Tözün. Hybrid Transactional/Analytical
Processing: A Survey. In SIGMOD, 2017.

[25] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma, P. Menon, T. C.
Mowry, M. Perron, I. Quah, et al. Self-Driving Database Management
Systems. In CIDR, 2017.

[26] M. Pezzini, D. Feinberg, N. Rayner, and R. Edjlali. Hybrid Trans-
action/Analytical Processing Will Foster Opportunities for Dramatic
Business Innovation. https://www.gartner.com/doc/2657815/hybrid-
transactionanalytical-processing-foster-opportunities, 2014.

[27] J. Rao, E. J. Shekita, and S. Tata. Using Paxos to Build a Scalable,
Consistent, and Highly Available Datastore. PVLDB, 4(4), 2011.

[28] M. Stonebraker and A. Weisberg. The VoltDB Main Memory DBMS.
IEEE Data Eng. Bull., 36(2), 2013.

[29] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi.
Calvin: Fast Distributed Transactions for Partitioned Database Systems.
In SIGMOD, 2012.

[30] Y. Wu, J. Arulraj, J. Lin, R. Xian, and A. Pavlo. An Empirical Evaluation
of In-Memory Multi-Version Concurrency Control. PVLDB, 10(7), 2017.

[31] Y. Wu, W. Guo, C.-Y. Chan, and K.-L. Tan. Fast failure recovery for
main-memory dbmss on multicores. In SIGMOD. ACM, 2017.

[32] Y. Wu, J. Yu, Y. Tian, R. Sidle, and R. Barber. Designing Succinct
Secondary Indexing Mechanism by Exploiting Column Correlations. In
SIGMOD, 2019.

[33] Y. Wu, J. Yu, Y. Tian, R. Sidle, and R. Barber. HERMIT in Action:
Succinct Secondary Indexing Mechanism via Correlation Exploration.
PVLDB, 12(12), 2019.

[34] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguilera, and J. Li.
Transaction Chains: Achieving Serializability with Low Latency in Geo-
Distributed Storage Systems. In SOSP, 2013.

