Chapter 15
Interactive Graph Summarization

Yuanyuan Tian and Jignesh M. Patel

Abstract Graphs are widely used to model real-world objects and their relation-
ships, and large graph data sets are common in many application domains. To
understand the underlying characteristics of large graphs, graph summarization
techniques are critical. Existing graph summarization methods are mostly statistical
(studying statistics such as degree distributions, hop-plots, and clustering coeffi-
cients). These statistical methods are very useful, but the resolutions of the sum-
maries are hard to control. In this chapter, we introduce database-style operations
to summarize graphs. Like the OLAP-style aggregation methods that allow users
to interactively drill-down or roll-up to control the resolution of summarization, the
methods described in this chapter provide an analogous functionality for large graph
data sets.

15.1 Introduction

Graphs provide a powerful primitive for modeling real-world objects and the
relationships between objects. Various modern applications have generated large
amount of graph data. Some of these application domains are listed below:

e Popular social networking web sites, such as Facebook (www.facebook.com),
MySpace (www.myspace.com), and LinkedIn (www.linkedin.com), attract mil-
lions of users (nodes) connected by their friendships (edges). By April 2009, the
number of active users on Facebook has grown to 200 million, and on average
each user has 120 friends. Mining these social networks can provide valuable
information on social relationships and user communities with common inter-
ests. Besides mining the friendship network, one can also mine the “implicit”
interaction network formed by dynamic interactions (such as sending a message
to a friend).
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e Coauthorship networks and citation networks constructed from DBLP
(www.informatik.uni-trier.de/~ley/db/) and CiteSeer (citeseer.ist.psu.edu) can
help understand publication patterns of researchers.

e Market basket data, such as those produced from Amazon (www.amazon.com)
and Netflix (www.netflix.com), contain information about millions of products
purchased by millions of customers, which forms a bipartite graph with edges
connecting customers to products. Exploiting the graph structure of the market
basket data can improve customer segmentation and targeted advertising.

e The link structure of the World Wide Web can be naturally represented as a
graph with nodes representing web pages and directed edges representing the
hyperlinks. According to the estimate at www.worldwidewebsize.com, by May
15, 2009, the World Wide Web contains at least 30.05 billion webpages. The
graph structure of the World Wide Web has been extensively exploited to improve
search quality [8], discover web communities [16], and detect link spam[23].

With the overwhelming wealth of information encoded in these graphs, there is
a critical need for tools to summarize large graph data sets into concise forms that
can be easily understood.

Graph summarization has attracted a lot of interest from a variety of research
communities, including sociology, physics, and computer science. It is a very broad
research area that covers many topics. Different ways of summarizing and under-
standing graphs have been invented across these different research communities.
These different summarization approaches extract graph characteristics from differ-
ent perspectives and are often complementary to each other. Sociologists and physi-
cists mostly apply statistical methods to study graph characteristics. The summaries
of graphs are statistical measures, such as degree distributions for investigating the
scale-free property of graphs, hop-plots for studying the small world effect, and
clustering coefficients for measuring the clumpiness of large graphs. Some examples
of this approach were presented in Chapter 8. In the database research community,
methods for mining frequent subgraph patterns are used to understand the character-
istics of large graphs, which was the focus of Chapter 4. The summaries produced
by these methods are sets of frequently occurring subgraphs (in the original graphs).
Various graph clustering (or partitioning) algorithms are used to detect community
structures (dense subgraphs) in large graphs. For these methods, the summaries that
are produced are partitions of the original graphs. This topic is covered in Chap-
ters 3 and 7. Graph compression and graph visualization are also related to the graph
summarization problem. These two topics will be discussed in Section 15.7 of this
chapter.

This chapter, however, focuses on a graph summarization method that produces
small and informative summaries, which themselves are also graphs. We call them
summary graphs. These summary graphs are much more compact in size and pro-
vide valuable insight into the characteristics of the original graphs. For example, in
Fig. 15.1, a graph with 7445 nodes and 19,971 edges is shown on the left. Under-
standing this fairly small graph by mere visual inspection of the raw graph structure
is very challenging. However, the summarization method introduced in this chapter
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will generate much compact and informative graphs that summarize the high-level
structure characteristics of the original graph and the dominant relationships among
clusters of nodes. An example summary graph for the original graph is shown on the
right of Fig. 15.1. In the summary graph, each node represents a set of nodes from
the original graph, and each edge of the summary graph represents the connections
between two corresponding sets of nodes. The formal definition of summary graphs
will be introduced in Section 15.2.

Summarization .
B ———

Fig. 15.1 A summary graph (right) is generated for the original graph (left)

The concept of summary graph is the foundation of the summarization method
presented in this chapter. This method is very unique in that it is amenable to an
interactive querying scheme by allowing users to customize the summaries based on
user-selected node attributes and relationships. Furthermore, this method empowers
users to control the resolutions of the resulting summaries, in conjunction with an
intuitive “drill-down” or “roll-up” paradigm to navigate through summaries with
different resolution. This last aspect of drill-down or roll-up capability is inspired
by the OLAP-style aggregation methods [11] in the traditional database systems.

Note that the method introduced in this chapter is applicable for both directed
and undirected graphs. For ease of presentation, we only consider undirected graphs
in this chapter.

The remainder of this chapter is organized as follows: We first introduce the for-
mal definition of summary graph in Section 15.2, then discuss the aggregation-based
graph summarization method in Section 15.3. Section 15.4 shows an interesting
example of applying this graph summarization method to the DBLP [17] coauthor-
ship graph. Section 15.5 demonstrates the scalability of the described method. Sec-
tion 15.6 provides some discussion on the summarization method. Related topics,
such as graph compression and graph visualization are discussed in Section 15.7.
Finally, Section 15.8 concludes this chapter.
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15.2 Summary Graphs

In this chapter, we consider a general graph model where nodes in the graph have
arbitrary number of associated attributes and are connected by multiple types of
edges. More formally, a graph is denoted as G = (V, E), where V is the set of
nodes and E is the set of edges. The set of attributes associated with the nodes is

denoted as A = {aj, aa, ..., ay}. We require that each node v € V has a value
for every attribute in A. The set of edge types present in the graph is denoted as
T ={t1,12,...,1t,}. Each edge (u, v) € E can be marked by a non-trivial subset of

edge types denoted as T (u, v) (@ C T (u,v) C T). For example, Fig. 15.2a shows
a sample social networking graph. In this graph, nodes represent students. Each
student node has attributes such as gender and department. In addition, there are
two types of relationships present in this graph: friends and classmates. While some
students are only friends or classmates with each other, others are connected by both
relationships. Note that in this figure, only a few edges are shown for compactness.
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Fig. 15.2 Graph summarization by aggregation

We can formally define summary graphs as follows: Given a graph G = (V, E),
and a partition of V, ® = {G}, Go, ..., Gi} (Uf-;l Gi=VandVi # jGNG; =0),
the summary graph based on ® is § = (Vs, Eg), where Vg = &, and Eg =
{(Gi,Gj)1Fu € Gi,v € G}, (u,v) € E}. The set of edge types for each (G;, G;) €
Es is defined as T(G;, G;) = U(u,v)eE,ueg,»,veg,- T(u,v).

More intuitively, each node of the summary graph, called a group or a supernode,
corresponds to one group in the partition of the original node set, and an edge,
called group relationships or superedges, represents the connections between two
corresponding sets of nodes. A group relationship between two groups exists if and
only if there exists at least one edge connecting some nodes in the two groups.
The set of edge types for a group relationship is the union of all the types of the
corresponding edges connecting nodes in the two groups.
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15.3 Aggregation-Based Graph Summarization

The graph summarization method we will discuss in this chapter is a database-
style graph aggregation approach [28]. This aggregation-based graph summarization
approach contains two operations.

The first operation, called SNAP (Summarization by Grouping Nodes on
Attributes and Pairwise Relationships), produces a summary graph of the input
graph by grouping nodes based on user-selected node attributes and relationships.
The SNAP summary for the graph in Fig. 15.2a is shown in Fig. 15.2b. This summary
contains four groups of students and the relationships between these groups. Stu-
dents in each group have the same gender and are in the same department, and they
relate to students belonging to the same set of groups with friends and classmates
relationships. This compact summary reveals the underlying characteristics about
the nodes and their relationships in the original graph.

The second operation, called k-SNAP, further allows users to control the resolu-
tions of summaries. This operation is pictorially depicted in Fig. 15.3. Here using
the slider, a user can “drill-down” to a larger summary with more details or “roll-up”
to a smaller summary with less details.

Summaries
T - low

uonnjosey Lk

| high

Fig. 15.3 Illustration of multi-resolution summaries

Next we describe the two operations in more detail and present algorithms to
evaluate the SNAP and k-SNAP operations.

15.3.1 SNAP Operation

The SNAP operation produces a summary graph through a homogeneous grouping
of the input graph’s nodes, based on user-selected node attributes and relationships.
Figure 15.2b shows an example summary graph for the original graph in Fig. 15.2a,
generated by the SNAP operation based on gender and department attributes, and
classmates and friends relationships.
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The summary graph produced by SNAP operation has to satisfy the following
three requirements:

Attributes Homogeneity: Nodes in each group have the same value for each
user-selected attribute.

Relationships Homogeneity: Nodes in each group connect to nodes belonging
to the same set of groups with respect to each type of user-selected rela-
tionships. For example, in Fig. 15.2b, every student (node) in group G, is a
friend of some student(s) in G3, a classmate of some student(s) in G4, and has
at least a friend as well as a classmate in G;. By the definition of relationships
homogeneity, for each pair of groups in the result of the SNAP operation, if
there is a group relationship between the two, then every node in both groups
has to participate in this group relationship (i.e. every node in one group
connects to at least one node in the other group).

Minimality: The number of groups in the summary graph is the minimal among
all possible groupings that satisfy attributes homogeneity and relationships
homogeneity requirements.

There could be more than one grouping satisfying the attributes homogeneity
and relationships homogeneity requirements. In fact, the grouping in which each
node forms a group is always compatible with any given attributes and relationships
(see [28] for more details). The minimality requirement guarantees that the summary
graph is the most compact in size.

15.3.1.1 Evaluating SNAP Operation
The SNAP summary graph can be produced by the following top-down approach:

Top-down SNAP Approach

Step 1: Partition nodes based only on the user-selected attributes.

Step 2: Iteration Step
while a group breaks the relationships homogeneity requirement do
Split the group based on its relationships with other groups
end while

In the first step of the top-down SNAP approach, nodes in the original graph
are partitioned based only on the user-selected attributes. This step guarantees that
further splits of the grouping always satisfy the attributes homogeneity requirement.
For example, if nodes in a graph only have one attribute with values A, B, and
C, then the first step produces a partition of three groups with attribute values A,
B, and C, respectively, such as the example grouping shown in Fig. 15.4a. In the
iterative step, the algorithm checks whether the current grouping satisfies the rela-
tionships homogeneity requirement. If not, the algorithm picks a group that breaks
the requirement and splits this group based on how the nodes in this group connect
to nodes in other groups. In the example shown in Fig. 15.4a, group A (the group



15 Interactive Graph Summarization 395
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Fig. 15.4 An example of splitting a group based on its relationships with other groups in the
top-down SNAP approach

with attribute value A) does not satisfy the relationships homogeneity requirement:
the black nodes do not connect to any nodes in other groups, the shaded nodes only
connect to nodes in group B, while the gray nodes connect to both group B and
group C. This group is split based on how the nodes in this group connect to nodes
in other groups, which ends up with three subgroups containing black nodes, gray
nodes, and shaded nodes shown in Fig. 15.4b. In the next iteration, the algorithm
continues to check whether the new grouping satisfies the homogeneity require-
ment. If not, it selects and splits a group that breaks the requirement. The iterative
process continues until the current grouping satisfies the relationships homogeneity
requirement. It is easy to prove that the grouping resulting from this algorithm con-
tains the minimum number of groups satisfying both the attributes and relationships
homogeneity requirements.

15.3.2 k-SNAP Operation

15.3.2.1 Limitations of the SNAP Operation

The SNAP operation produces a grouping in which nodes of each group are homo-
geneous with respect to user-selected attributes and relationships. Unfortunately,
homogeneity is often too restrictive in practice, as most real life graph data are
subject to noise and uncertainty; for example, some edges may be missing, and
some edges may be spurious because of errors. Applying the SNAP operation on
noisy data can result in a large number of small groups, and, in the worst case, each
node may end up in an individual group. Such a large summary is not very useful
in practice. A better alternative is to let users control the sizes of the results to get
summaries with the resolutions that they can manage (as shown in Fig. 15.3).

The k-SNAP operation is introduced to relax the homogeneity requirement for
the relationships and allow users to control the sizes of the summaries.
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The relaxation of the homogeneity requirement for the relationships is based
on the following observation. For each pair of groups in the result of the SNAP
operation, if there is a group relationship between the two, then every node in both
groups participates in this group relationship. In other words, every node in one
group relates to some node(s) in the other group. On the other hand, if there is no
group relationship between two groups, then absolutely no relationship connects
any nodes across the two groups. However, in reality, if most (not all) nodes in the
two groups participate in the group relationship, it is often a good indication of a
“strong” relationship between the two groups. Likewise, it is intuitive to mark two
groups as being “weakly” related if only a small fraction of nodes are connected
between these groups.

Based on these observations, the k-SNAP operation relaxes the homogeneity
requirement for the relationships by not requiring that every node participates in
a group relationship. But it still maintains the homogeneity requirement for the
attributes, i.e., all the groupings should be homogeneous with respect to the given
attributes. Users control how many groups are present in the summary by specifying
the required number of groups, denoted as k. There are many different groupings of
size k, thus there is a need to measure the qualities of the different groupings. The
A-measure is proposed to assess the quality of a k-SNAP summary by examining
how different it is to a hypothetical “ideal summary.”

15.3.2.2 Measuring the Quality of k-SNAP Summaries

We first define the set of nodes in group G; that participate in a group relationship
(Gi, Gj) as ng(gi) = {ulu € G; and v € G; s.t. (u,v) € E}. Then we define the

L . . . |Pg; (Gi)l+|Pg, (G))]
participation ratio of the group relationship (G;, G;) as p; ; = % G gl’ .
i J

For a group relationship, if its participation ratio is greater than 50%, we call it a
strong group relationship, otherwise, we call it a weak group relationship. Note that
in a SNAP summary, the participation ratios are either 100 or 0%.

Given a graph G, the A-measure of a grouping of nodes ® = {G;, Go, ..., Gi} is
defined as follows:

A(DQ) = Z (6g;(Gi) +dg,(G))), (15.1)
Gi.Gjed
where
56, (G1) = |Pg; (Gi)l if p; ; <05 (15.2)

IGil — |Pg;(Gi)| otherwise.

Note that if the graph contains multiple types of relationships, then the A value
for each edge type is aggregated as the final A value.

Intuitively, the A-measure counts the minimum number of differences in par-
ticipations of group relationships between the given k-SNAP grouping and a
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hypothetical ideal grouping of the same size in which all the strong relationships
have 100% participation ratio and all the weak relationships have 0% participation
ratio. The measure looks at each pairwise group relationship: If this group relation-
ship is weak (p; x < 0.5), then it counts the participation differences between this
weak relationship and a non-relationship (p; x = 0); on the other hand, if the group
relationship is strong, it counts the differences between this strong relationship and
a 100% participation-ratio group relationship. The § function, defined in (15.2),
evaluates the part of the A value contributed by a group G; with one of its neigh-
bors G; in a group relationship. Note that dg, (G;) measures the contribution to the
A value by the connections within the group G; itself.

Given this quality measure and the user-specified resolution k (i.e. number of
groups in the summary is k), the goal of the k-SNAP operation is to find the sum-
mary of size k with the best quality. However, this problem has been proved to be
NP-Complete [28]. Two heuristic-based algorithms are proposed to evaluate the
k-SNAP operation approximately.

Top-Down k-SNAP Approach

Similar to the top-down SNAP algorithm, the top-down k-SNAP approach also starts
from the grouping based only on attributes, and then iteratively splits existing groups
until the number of groups reaches k.

However, in contrast to the SNAP evaluation algorithm, which randomly chooses
a splittable group and splits it into subgroups based on its relationships with other
groups, the top-down approach has to make the following decisions at each iterative
step: (1) which group to split and (2) how to split it. Such decisions are critical
as once a group is split, the next step will operate on the new grouping. At each
step, the algorithm can only make the decision based on the current grouping. Each
step should make the smallest move possible, to avoid going too far away from the
right direction. Therefore, the algorithm splits one group into only two subgroups at
each iterative step. There are different ways to split one group into two. One natural
way is to divide the group based on whether nodes have relationships with nodes
in a neighbor group. After the split, nodes in the two new groups either all or never
participate in the group relationships with this neighbor group.

As discussed in Section 15.3.2.2, the k-SNAP operation tries to find the grouping
with a minimum A measure (see (15.1)) for a given k. The computation of the A
measure can be broken down into each group with each of its neighbors (see the §
function in (15.2)). Therefore, our heuristic chooses the group that makes the most
contribution to the A value with one of its neighbor groups. More formally, for each
group G;, we define CT (G;) as follows:

CT(G) = %%X{ng (G} (15.3)

Then, at each iterative step, we always choose the group with the maximum
CT value to split and then split it based on whether nodes in this group G; have
relationships with nodes in its neighbor group G;, where
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G =arg ng}ax{&gj (G}

The top-down k-SNAP approach can be summarized as follows:
Top-down k-SNAP Approach

Step 1: Partition nodes based only on the user selected attributes.
Step 2: Iteration Step
while the grouping size is less than k do
Find G; with the maximum C7T (G;) value
Split G; based on its relationship with G; = arg maxg, {8gj G}
end while

Bottom-Up k-SNAP Approach

The bottom-up approach first computes the SNAP summary using the top-down
SNAP approach. The SNAP summary is the summary with the finest resolution,
as the participation ratios of group relationships are either 100 or 0%. Starting from
the finest summary, the bottom-up approach iteratively merges two groups until the
number of groups reduces to k.

Choosing which two groups to merge in each iterative step is crucial for the
bottom-up approach. First, the two groups are required to have the same attribute
values. Second, the two groups must have similar group relationships with other
groups. Now, this similarity between two groups can be formally defined as
follows.

The two groups to be merged should have similar neighbor groups with similar
participation ratios. We define a measure called MergeDist to assess the similarity
between two groups in the merging process.

MergeDist(Gi.Gj) = Y _ |pix — pjxl- (15.4)
ki, j

MergeDist accumulates the differences in participation ratios between G;
and G; with other groups. The smaller this value is, the more similar the two groups
are.

The bottom-up k-SNAP approach can be summarized as follows:

Bottom-up k-SNAP Approach

Step 1: Compute the SNAP summary using the top-down SNAP approach
Step 2: Iteration Step

while the grouping size is greater than k do

Find G; and G; with the minimum MergeDist(G;, G;) value

Merge G; and G;

end while
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15.3.3 Top-Down k-SNAP Approach vs. Bottom-Up
k-SNAP Approach

In [28], extensive experiments show that the top-down k-SNAP approach signifi-
cantly outperforms the bottom-up k-SNAP approach in both effectiveness and effi-
ciency for small k values. In practice, users are more likely to choose small k values
to generate summaries. Therefore, the top-down approach is preferred for most prac-
tical uses.

15.4 An Example Application on Coauthorship Graphs

This section presents an example of applying the aggregation-based graph summa-
rization approach to analyze the coauthorship graph of database researchers. The
database researcher coauthorship graph is generated from the DBLP Bibliography
data [17] by collecting the publications of a number of selected journals and confer-
ences in the database area. The constructed coauthorship graph with 7445 authors
and 19,971 coauthorships is shown in Fig. 15.5. Each node in this graph represents
an author and has an attribute called PubNum, which is the number of publications
belonging to the corresponding author. Another attribute called Prolific is assigned
to each author in the graph indicating whether that author is prolific: authors with
< 5 papers are tagged as low prolific (LP), authors with > 5 but < 20 papers are
prolific (P), and the authors with > 20 papers are tagged as highly prolific (HP).

Fig. 15.5 DBLP DB coauthorship graph
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Fig. 15.6 The SNAP result for DBLP DB coauthorship graph

The SNAP operation on the Prolific attribute and the coauthorships produces a
summary graph shown in Fig. 15.6. The SNAP operation results in a summary with
3569 groups and 11,293 group relationships. This summary is too big to analyze.
On the other hand, by applying the SNAP operation on only the Prolific attribute
(i.e., not considering any relationships in the SNAP operation), a summary with
only three groups is produced shown in the leftmost figure of Table 15.1. The bold
edges between two groups indicate strong group relationships (with more than 50%
participation ratio), while dashed edges are weak group relationships. This summary
shows that the HP researchers as a whole have very strong coauthorship with the P
group of researchers. Researchers within both groups also tend to coauthor with
people within their own groups. However, this summary does not provide a lot of
information for the LP researchers: they tend to coauthor strongly within their group
and they have some connection with the HP and P groups.

Now, making use of the k-SNAP operation, summaries with multiple resolutions
are generated. The figures in Table 15.1 show the k-SNAP summaries fork = 4, 5, 6,
and 7. As k increases, more details are shown in the summaries.

When k = 7, the summary shows that there are five subgroups of LP researchers.
One group of 1192 LP researchers strongly collaborates with both HP and P
researchers. One group of 521 only strongly collaborates with HP researchers. One
group of 1855 only strongly collaborates with P researchers. These three groups
also strongly collaborate within their groups. There is another group of 2497 LP
researchers that has very weak connections to other groups but strongly cooperates
among themselves. The last group has 761 LP researchers, who neither coauthor
with others within their own group nor collaborate strongly with researchers in other
groups. They often write single author papers.
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Now, in the k-SNAP summary for k = 7, we are curious if the average number
of publications for each subgroup of the LP researchers is affected by the coauthor-
ships with other groups. The above question can be easily answered by applying the
avg operation on the PubNum attribute for each group in the result of the k-SNAP
operation.

With this analysis, we find out that the group of LP researchers who collaborate
with both P and HP researchers has a high average number of publications: 2.24. The
group only collaborating with HP researchers has 1.66 publications on average. The
group collaborating with only the P researchers has on average 1.55 publications.
The group that tends to only cooperate among themselves has a low average number
of publications: 1.26. Finally, the group of mostly single authors has on average
only 1.23 publications. Not surprisingly, these results suggest that collaborating with
HP and P researchers is potentially helpful for the low prolific (often beginning)
researchers.

15.5 Scalability of the Graph Summarization Method

In this section, we take the top-down k-SNAP approach as an example to demon-
strate the scalability of the graph summarization method described in this chapter,
as it is more effective and efficient for most practical uses (see Section 15.3.3). More
comprehensive experimental results can be found in [28].

Most real-world graphs show power-law degree distributions and small-world
effect [20]. Therefore, the R-MAT model [9] in the GTgraph suites [2] is used
to generate synthetic graphs with power-law degree distributions and small-world
characteristics. The generator uses the default parameters values, and the average
node degree in each synthetic graph is set to 5. An attribute is also assigned to each
node in a generated graph. The domain of this attribute has five values. Each node
is assigned randomly one of the five values.

The top-down k-SNAP approach was implemented in C++ on top of
PostgreSQL(http://www.postgresql.org) and is applied to different sized synthetic
graphs with three resolutions (k values): 10, 100, and 1000. This experiment was
run on a 2.8 GHz Pentium 4 machine running Fedora 2, and equipped with a 250 GB
SATA disk. 512 MB of memory is allocated to the PostgreSQL database buffer pool,
and another 256 MB of additional memory is assigned as the working space outside
the database system.

The execution times with increasing graph sizes are shown in Fig. 15.7. When
k = 10, even on the largest graph with 1 million nodes and 2.5 million edges,
the top-down k-SNAP approach finishes in about 5 min. For a given k value, the
algorithm scales nicely with increasing graph sizes.
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Fig. 15.7 Scalability experiment for synthetic data sets

15.6 Discussion

The example application and the experiments discussed above demonstrate the
effectiveness and efficiency of the SNAP/k-SNAP summarization technique. How-
ever, the SNAP/k-SNAP approach described above has limitations, which we dis-
cuss below.

Attributes with Large Value Ranges: As can be seen from the algorithms in Sec-
tion 15.3, the minimum summary size is bounded by the cardinality of the domain
of the user-selected attributes. More precisely, the summary size is bounded by the
actual number of distinct values in the graph data for the user-selected attributes.
If one of the user-selected attributes has a large number of distinct values in the
graph, then even the coarsest summary produced will be overwhelmingly large.
One approach to solving this problem is to bucketize the attribute values into a
small number of categories. One such approach is proposed in [30] to automatically
categorize attributes with large distinct values by exploiting the domain knowledge
hidden inside the node attributes values and graph link structures.

Large Number of Attributes: A related problem to the one discussed above is
when a user selects a large number of node attributes for summarization. Now the
attribute grouping in SNAP/K-SNAP has to be done over the cross-product of the
distinct values used in each attribute domain. This cross-product space can be large.
Bucketization methods can again be used in this case, though the problem is harder
than the single attribute case. This is an interesting topic for future work.

15.7 Related Topics

15.7.1 Graph Compression

The graph summarization method introduced in this chapter produces small and
informative summary graphs of the original graph. In some sense, these compact



404 Y. Tian and J.M. Patel

summary graphs can be viewed as (lossy) compressed representations of the original
graph, although the main goal of the summarization method we described is not to
reduce the number of bits needed to encode the original graph, but enabling better
understanding of the graph.

The related problem of graph compression has been extensively studied. Various
compression techniques for unlabeled planar graphs have been proposed [10, 12,
15] and are generalized to graphs with constant genus [18]. In [5], a technique is
proposed to compress unlabeled graphs based on the observation that most graphs in
practice have small separators (subgraphs can be partitioned into two approximately
equally sized parts by removing a relatively small number of vertices).

Due to the large scale of the web graph, a lot of attention has drawn to compress
the web graph. Most of the studies have focused on lossless compression of the web
graph so that the compact representation can be used to calculate measures such
as PageRank [8]. Bharat et al. [4] proposed a compression technique making use
of gaps between the nodes in the adjacency list. A reference encoding technique is
introduced in [22], based on the observation that often a new web page adds links
by copying links from an existing page. In this compression scheme, the adjacency
list of one node is represented by referencing the adjacency list of another node.
Alder and Mitzenmacher [1] proposed a minimum spanning tree-based algorithm
to find the best reference list for the reference encoding scheme. The compression
technique proposed in [27] takes advantage of the link structure of the web and
achieves significant compression by distinguishing links based on whether they are
inside or cross hosts, and by whether they are connecting popular pages or not. Boldi
and Vigna [6, 7] developed a family of simple flat codes, called ¢ codes, which are
well suited for compressing power-law distributed data with small exponents. They
achieve high edge compression and scale well to large graphs.

Two recently proposed graph compression techniques that share similarities with
the graph summarization technique described in this chapter will be discussed in
detail below.

15.7.1.1 S-Node Representation of the Web Graph

The compression technique proposed in [21] compresses the web graph into a
S-Node representation. As exemplified in Fig. 15.8, the S-Node representation of
a web graph contains the following components:

SUPERNODE GRAPH: The supernode graph is essentially a summary graph of
the web graph, in which groups are called supernodes and group relation-
ships are called superedges.

INTRANODE GRAPHS: Each intranode graph (abbreviated as IN in Fig. 15.8)
characterizes the connections between the nodes inside a supernode.

POSITIVE SUPEREDGE GRAPHS: Each positive superedge graph (abbreviated
as PSE in Fig. 15.8) is a directed bipartite graph that represents the links
between two corresponding supernodes.
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Fig. 15.8 An example of S-Node representation (from [21])

NEGATIVE SUPEREDGE GRAPHS: Each negative superedge graph (abbrevi-
ated as NSE in Fig. 15.8) captures, among all possible links between two
supernodes, those that are absent from the actual web graph.

The compression technique in [21] employs a top-down approach to compute the
S-Node representation. This algorithm starts from a set of supernodes that are gen-
erated based on the URL domain names, then iteratively splits an existing supernode
by exploiting the URL patterns of the nodes inside this supernode and their links to
other supernodes. However, different from the graph summarization method intro-
duced in this chapter, this approach is specific to the web graph, thus are not directly
applicable to other problem domains. Furthermore, since this approach aims at com-
pressing the web graph, only one compressed S-Node representation is produced.
Users have no control over the resolution of the summary graph.

15.7.1.2 MDL Representation of Graphs

Similar to the S-Node method described above, the technique proposed in [19] also
compresses a graph into a summary graph. To reconstruct the original graph, a set
of edge corrections are also produced. Figure 15.9 shows a sample graph G and its
summary graph S with the set of edge corrections C.

Fig. 15.9 An example of MDL-based summary: G is the original graph, S is the summary graph,
and C is the set of edge corrections (from [25])
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The original graph can be reconstructed from the summary graph by first
adding an edge between each pair of nodes whose corresponding supernodes
are connected by an superedge, then applying the edge corrections to remove
non-existent edges from or add missing edges to the reconstructed graph. For
example, to reconstruct the original graph in Fig. 15.9, the summary graph §
is first expanded (now V = {a,b,c,d,e, f,g,h} and E = {(a,b), (a,c),
(a,h), (a,g), (b,c), (h,d), (h,e), (h, [), (g, d), (g.e),(g [}, then the set of
corrections in C are applied: adding the edge (a, e) to E and removing the edge
(g,d) from E.

Essentially, this proposed representation is equivalent to the S-Node representa-
tion described above. The intranode graphs, positive superedge graphs, and neg-
ative superedge graphs in the S-Node representation, collectively, can produce
the edge corrections needed to reconstruct the original graph from the summary
graph.

Based on Rissanen’s minimum description length (MDL) principle [25], the
authors in [19] formulated the graph compression problem into an optimization
problem, which minimizes the sum of the size of the summary graph (the theory)
and the size of the edge correction set (encoding of the original graph based on the
theory). The representation with the minimum cost is called the MDL representa-
tion.

Two heuristic-based algorithms are proposed in [19] to compute the MDL repre-
sentation of a graph. Both algorithms apply a bottom-up scheme: starting from the
original graph and iteratively merging node pairs into supernodes until no further
cost reduction can be achieved. The two algorithms differ in the policy of choos-
ing which pair of nodes should merge in each iteration. The GREEDY algorithm
always chooses the node pairs that give the maximum cost reduction, while the
RANDOMIZED algorithm randomly picks a node and merges it with the best node
in its vicinity.

The MDL representation can exactly reconstruct the original graph. However, for
many applications, recreating the exact graph is not necessary. It is often adequate
enough to construct a graph that is reasonably close to the original graph. As a result,
the e-approximate MDL representation is proposed to reconstruct the original graph
within the user-specified bounded error € (0 < € < 1).

To compute the e-approximate MDL representation with the minimum cost,
two heuristic-based algorithms are proposed in [19]. The first algorithm, called
APXMDL, modifies the exact MDL representation by deleting corrections and
summary edges while still satisfying the approximation constraint. The second
algorithm, called APXGREEDY, incorporates the approximation constraint into the
GREEDY algorithm, and constructs the e-approximate representation directly from
the original graph.

The key difference between this MDL-based approach and the SNAP/k-SNAP
summarization approach is that the MDL method does not consider node attributes
or multiple relationships in the summarization process and it does not allow users
to control the resolutions of summaries.



15 Interactive Graph Summarization 407
15.7.2 Graph Visualization

Graph visualization methods are primarily designed to better layout a graph on a
computer screen so that it is easier for users to understand the graph by visual inspec-
tion. Various graph drawing techniques are surveyed in [3]. However, as graphs
become large, displaying an entire graph on the limited computer screen is challeng-
ing, both from the usability and the visual performance perspectives. To overcome
the problems raised by the large graph sizes, navigation, interaction and, summa-
rization techniques are often incorporated into graph visualization tools [13]. One
common summarization technique used in graph visualization is structure-based
clustering. Clustering provides abstraction of the original graph, and reduces the
visual complexity. Graph visualization systems, such as [14, 24, 29], have applied
clustering techniques to improve visualization clarity and at the same time increase
performance of layout and rendering. The SuperGraph approach introduced in [26]
employs a hierarchical graph partitioning technique to visualize large graphs in
different resolution. In fact, the graph summarization technique introduced in this
chapter can be coupled with visualization techniques to provide better understanding
of large graphs.

15.8 Summary

This chapter studies an aggregation-based summarization method, which produces
compact and informative graphs as the summaries of the original graphs. The sum-
mary graphs characterize the high-level structure embedded in the original graphs by
aggregating nodes and edges from the original graph into node groups (supernodes)
and group relationships (superedges), respectively. This summarization method uti-
lizes the graph structure as well as user-specified node attributes and relationships
to generate multi-resolution summaries. The users can interactively “drill-down” or
“roll-up” to navigate through summaries with different resolution. Graph summa-
rization is related to graph compression and can be coupled with graph visualization
methods to enable better understanding of large graphs.
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