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ABSTRACT
Hadoop has become an attractive platform for large-scale data ana-
lytics. In this paper, we identify a major performance bottleneck of
Hadoop: its lack of ability to colocate related data on the same set
of nodes. To overcome this bottleneck, we introduce CoHadoop,
a lightweight extension of Hadoop that allows applications to con-
trol where data are stored. In contrast to previous approaches, Co-
Hadoop retains the flexibility of Hadoop in that it does not require
users to convert their data to a certain format (e.g., a relational
database or a specific file format). Instead, applications give hints
to CoHadoop that some set of files are related and may be processed
jointly; CoHadoop then tries to colocate these files for improved
efficiency. Our approach is designed such that the strong fault tol-
erance properties of Hadoop are retained. Colocation can be used
to improve the efficiency of many operations, including indexing,
grouping, aggregation, columnar storage, joins, and sessionization.
We conducted a detailed study of joins and sessionization in the
context of log processing—a common use case for Hadoop—, and
propose efficient map-only algorithms that exploit colocated data
partitions. In our experiments, we observed that CoHadoop outper-
forms both plain Hadoop and previous work. In particular, our ap-
proach not only performs better than repartition-based algorithms,
but also outperforms map-only algorithms that do exploit data par-
titioning but not colocation.

1. INTRODUCTION
Large-scale data intensive analytics has become indispensable to

businesses as enterprises need to gain actionable insights from their
increasing volumes of data. The emergence of Google’s MapRe-
duce paradigm [4] and its open-source implementation Hadoop [17]
provide enterprises with a cost-effective solution for their analytics
needs. Hadoop is a framework that supports data-intensive parallel
applications, working with 1000s of compute nodes and petabytes
of data.

In Hadoop, map and reduce functions operate on data stored in
HDFS files [18]. HDFS stores large files as a series of blocks dis-
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tributed over a cluster of data nodes and takes care of replication
for fault tolerance. The data placement policy of HDFS tries to bal-
ance load by placing blocks randomly; it does not not take any data
characteristics into account. In particular, HDFS does not provide
any means to colocate related data on the same set of nodes. To
address this shortcoming, we propose CoHadoop, an extension of
Hadoop with a lightweight mechanism that allows applications to
control where data are stored.

We studied the benefits of data colocation within the context of
log processing, a common usage scenario for Hadoop. In this sce-
nario, data are accumulated in batches from event logs, such as
clickstreams, phone call records, application logs, or a sequences
of transactions. Each batch of data is ingested into Hadoop and
stored in one or more HDFS files at regular intervals. Two common
operations in log analysis are (1) joining the log data with some
reference data and (2) sessionization, i.e., computing user sessions.
Our experiments suggest that colocation can significantly increase
performance of these common data processing tasks.

As shown by [1, 16, 10, 6], join performance can be improved by
copartitioning the two input files. In these cases, the performance
gain is due to the elimination of data shuffling and the reduce phase
of MapReduce. With colocated data partitions, joins can be exe-
cuted using a map-only join algorithm with no remote I/O. Some
of the earlier work [10] does not support colocation at all, while
others [1, 6] perform heavy-weight changes to colocate the related
data partitions: HadoopDB [1] stores the data in a local DBMS
and hence disrupts the dynamic scheduling and fault tolerance of
Hadoop; Hadoop++ [6] cogroups the two input files by creating a
special “Trojan” file. Although this approach does not require a
modification of Hadoop, it is a static solution that requires users to
reorganize their input data. In fact, Hadoop++ can only colocate
two files that are created by the same job, and requires reorganiza-
tion of the data as new files are ingested into the system. In appli-
cations such as log processing, where data arrive incrementally and
continuously, it is important (1) to colocate many files, not just two,
and (2) to colocate newly ingested files incrementally with existing
data.

As contrast to earlier approaches, we decouple the problem of
colocating related files from the applications that exploit this prop-
erty. For this purpose, we extend HDFS to enable colocating re-
lated files at the file system level. Our extensions require minimal
changes to HDFS: We introduce a new file property to identify re-
lated data files and modify the data placement policy of HDFS to
colocate all copies of those related files. These changes retain the
benefits of Hadoop, including load balancing and fault tolerance.
The decoupling also enables a wide variety of applications to ex-
ploit data colocation by simply specifying related files. Use cases
include colocating log files with reference files for joins, colocat-



ing partitions for grouping and aggregation, colocating index files
with their data files, colocating columns of a table—each stored in
a separate file—, etc. CoHadoop’s flexibility makes it attractive
to high-level languages on MapReduce, such as Pig [15], Hive [8],
and Jaql [9]. We expect these systems to automatically find the best
way to exploit CoHadoop’s capabilities to optimize query process-
ing based on the observed workload.

We conducted extensive experiments to evaluate the performance
of CoHadoop. In our experiments, we investigated the performance
gain due to copartitioning and colocation separately, and showed
that it is not enough to just copartition the data; we also need to
colocate related partitions for maximum performance gain. We
observed that CoHadoop provides significantly better performance
than plain Hadoop solutions; no modifications to the scheduler are
required and Hadoop’s fault tolerance and data distribution char-
acteristics are maintained. We also compared our approach with
the “TrojanJoin” of Hadoop++ [6] and show that in addition to Co-
Hadoop’s flexibility and incremental features in colocating the data,
it performs better than Hadoop++.

The contributions of this paper can be summarized as follows:

1. We propose a flexible, dynamic, and light-weight approach
to colocating related data files, which is implemented di-
rectly in HDFS. Our solution is not tied to a particular use
case, and can handle many different usage patterns, covering
most earlier work.

2. We identify two use cases in log processing, i.e., join and
sessionization, where copartitioning related files and colocat-
ing them speeds up query processing significantly. We also
present efficient algorithms that exploit colocated data and
align well with incremental and continuous data ingestion.

3. We study the fault tolerance, data distribution, and data loss
properties of CoHadoop both empirically and analytically us-
ing a stochastic model.

4. We report detailed experimental results on the performance
of CoHadoop for join and sessionization queries under dif-
ferent settings.

The remainder of this paper is organized as follows: In Sec-
tion 2, we provide background information about HDFS. Next,
we describe colocation in HDFS in Section 3. In Section 4, we
present join and sessionization algorithms that exploit data coloca-
tion property. Section 5 discusses our experimental results. Finally,
we review related work in Section 6 and conclude in Section 7.

2. HDFS BACKGROUND
HDFS [18] is a distributed file system that provides high

throughput access to data. Files are split into blocks of fixed size
and stored on datanodes. The block size is configurable and de-
faults to 64MB. Files can be written only once, i.e., updates of
existing files are not allowed. The HDFS namenode keeps track
of the directory structure of the file system. It also maintains a list
of active datanodes as well as their data blocks in a dynamic data
structure called BlockMap. Whenever a datanode starts up, it reg-
isters itself at the namenode with the list of blocks in its storage;
these blocks are added to the namenode’s BlockMap. Whenever
the namenode detects failure of a datanode, the blocks of the failed
node are removed from the BlockMap. Datanodes can both send
blocks to clients upon request, but also store new blocks sent by the
client. This process is coordinated by the namenode, which directs
clients to the correct datanodes.

HDFS can be configured to replicate files for fast recovery in the
case of failures. The default replication factor is three, which means
that a block is stored on three separate datanodes. HDFS uses a
simple data placement policy to select the datanodes that store the
blocks and replicas of a file. The default policy of HDFS places the
first copy of a newly created block on the local datanode at which
the block is created (provided that there is enough space). This is
called write affinity. HDFS then tries to select a datanode within
the same rack for the second copy, and a datanode in a different
rack for the third copy. As we will explain in Section 3, we have
modified this data placement policy to support colocation.

Hadoop uses so-called InputFormats to define how files are
split and consumed by the map tasks. Several InputFormats
are provided with Hadoop. Input formats that operate on files
are based on an abstract type called FileInputFormat. When
starting a Hadoop job, the FileInputFormat is provided with
a path containing the files to process. It then divides these files
into one or more splits, which constitute the unit of work for a sin-
gle map task in a MapReduce program. By default, the various
FileInputFormat implementations break a file into 64 MB
chunks (the default block size of HDFS). The Hadoop scheduler
attempts its best to schedule map tasks on nodes that have a lo-
cal copy of their splits. InputFormats provide an extensibility
point that users can exploit to control the distribution of data to
map tasks by assembling the customized splits. In Section 4, we
show how InputFormats can help to implement efficient join
and aggregation algorithms.

3. DATA COLOCATION
The objective of HDFS’ current data placement policy [18] is to

achieve load balancing by distributing the data evenly across the da-
tanodes, independently of the intended use of the data. This simple
data placement policy works well with most Hadoop applications
that access just a single file, but applications that process data from
different files can get a significant boost in performance with cus-
tomized strategies. CoHadoop, a lightweight extension to Hadoop,
enables applications to easily define and exploit such customized
strategies. It has been designed to be easy to use by applications,
while at the same time retaining the good load balancing and fault
tolerance properties of HDFS. In this section, we describe and an-
alyze CoHadoop’s approach to data colocation; algorithms and ap-
plications that exploit colocation are discussed in Section 4.

Research in parallel databases [20] as well as recent work on
Hadoop [6, 1] have shown that careful data organization enables
efficient algorithms for query processing. For example, a com-
mon technique that database systems employ is (1) to partition the
data on some join or grouping attribute depending on the usage pat-
tern, and (2) to colocate corresponding partitions on the same node.
Transferring this idea to Hadoop is not straightforward: Although
partitioning is easy to achieve in Hadoop [10], colocation is not [6,
1]. This is because Hadoop provides no principled way for appli-
cations to control where the data are stored.1 Without colocation,
data shuffling costs and network overhead reduces the effectiveness
of partitioning. To overcome this and related problems, CoHadoop
provides a generic mechanism that allows applications to control
data placement at the file-system level, if needed. This mechanism
can be used, for instance, to colocate corresponding partitions and
their replicas on the same set of datanodes.
1HDFS’ write affinity—which places the first copy of a newly writ-
ten file on the node that created the file—can be used to influence
data placement in a limited way, but doing so is cumbersome and
error prone as it requires interaction with (or even replacement of)
Hadoop’s scheduler.
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Figure 1: Example file colocation in CoHadoop.

To achieve colocation, CoHadoop extends HDFS with a new file-
level property called a locator, and modifies Hadoop’s data place-
ment policy so that it makes use of this locator property. In our
implementation, each locator is represented by an integer value,
but other data types may also be used. There is an N:1 relation-
ship between files and locators: Each file in HDFS is assigned to
at most one locator and many files can be assigned to the same lo-
cator. Files with the same locator are placed on the same set of
datanodes, whereas files with no locator are placed via Hadoop’s
default strategy. Note that colocation involves all data blocks, in-
cluding replicas. Figure 1 shows an example of colocating two
files, A and B, via a common locator. All of A’s two HDFS blocks
and B’s three blocks are stored on the same set of datanodes.

To manage the locator information and keep track of colocated
files, we introduce a new data structure, the locator table, into the
namenode of HDFS. The locator table stores a mapping of locators
to the list of files that share this locator. Figure 1 shows the locator
table corresponding to the example cluster. Similar to the block-
to-node mapping in HDFS, the locator table is not synchronized
to disk. Instead, it is maintained dynamically in memory while
the namenode is running and reconstructed from the file-system
image when the namenode is restarted. To facilitate reconstruction,
we store the locator of each file in its INode, a disk-resident data
structure that keeps track of all file properties.

Data placement is modified in the following way: Whenever a
new file f with locator l is created, we query the locator table to
check whether or not it contains an entry for l. If not, we add a
new entry (l, f) to the locator table and use the default data place-
ment policy of HDFS to choose the datanodes to store the replicas.
Otherwise, locator l is known and we obtain the list of all files
with locator l from the locator table. For each file, we query the
BlockMap data structure of the namenode to obtain a list of its
blocks and their storage locations (set of datanodes). To store r
replicas of the new file, we need to choose r datanodes from this
list. We select the r datanodes that store the highest number of
blocks with locator l and have enough space for the new file. If less
than r of these nodes have sufficient space, we select more nodes
based on HDFS’ default data placement policy. Thus data place-
ment in CoHadoop is best effort: The creation of new files always
succeeds (given that there is sufficient space in the cluster) and data
are not moved around to enforce strict colocation. We chose this ap-
proach because it retains HDFS’ fault tolerance properties (see be-
low) and does not incur reorganization costs. However, CoHadoop
guarantees perfect colocation when there is sufficient space on each
node of the cluster and no failures occur.

As indicated above, colocation has some effect on the data dis-
tribution over the cluster. In fact, the data distribution depends on
several factors, including the number of files assigned to each lo-
cator, the order of file creation, file sizes, and the disk capacity of
the datanodes. For example, if too many files are assigned the same
locator so that the current set of r datanodes runs out of space, Co-
Hadoop will switch to a new set of datanodes to store subsequent

files with this locator. When this happens, only subsets of the files
with the same locator are actually colocated: CoHadoop sacrifices
colocation for availability. Note that for this reason the creation or-
der of files in CoHadoop may also affect the data distribution since
the first file that is ingested determines the set of nodes to store
subsequent files with the same locator. In general, an overuse of
a single or few locators leads to skew in the data distribution. We
recommend (and expect) that applications use locators sensibly so
that a balanced data distribution can be achieved.

In Appendix 9.1, we analyze the data distribution and fault tol-
erance properties of CoHadoop and compare it with Hadoop via
a simple probabilistic model. Regarding data loss due to failing
datanodes, we show that the probability of losing data is signifi-
cantly lower in CoHadoop than in Hadoop. Given that data loss
occurs, however, CoHadoop loses more data. The probability and
amount of data loss balance out: The expected amount of lost data
is the same for both approaches. Regarding the data distribution
over the cluster, our model indicates that CoHadoop only slightly
increases the variation of the load when locators are used sensibly.
Our experiments (Section 5.3) suggest that this increase does not
negatively affect the query performance or fault tolerance.

4. EXPLOITING DATA COLOCATION
The proposed data colocation mechanism can be exploited by

many different applications. In this section, we examplarily dis-
cuss how to use colocation to improve the efficiency of join and
sessionization queries in the context of log processing.

4.1 Log Processing on Plain Hadoop
In log processing, a log of events—such as a clickstream, a

log of phone call records, application logs, or a sequence of
transactions—is continuously collected. Log data is usually col-
lected at multiple application servers at different times and is large
in volume. To analyze this data, the log files are moved to a dis-
tributed file system such as HDFS and analytical queries are run on
the so-obtained collection of log files. In addition, reference data—
such as user and account information—are often brought in to en-
rich the log data during the analysis. We describe two common
queries for log processing and demonstrate how they are usually
evaluated in plain Hadoop.

4.1.1 Sessionization
The most common query in log processing is sessionization, in

which log records are divided into user sessions. This is done by
grouping the records in the logs by an account or user id, sorting
each of the groups by time stamp, and finally dividing the sorted
lists into sessions. The standard MapReduce algorithm for this
query is the repartition-based solution described below.

Basic MapReduce Solution: The mappers read the log records
from multiple log files and output the extracted group key (the ac-
count id) along with the original record as a key-value pair. The
map output is grouped by key in the shuffling phase and fed to the
reducers, where the log records for each group are sorted (by time
stamp) and divided into sessions.

4.1.2 Join
Another important query for log processing is an equi-join be-

tween log and reference data; e.g., joining transaction logs with
corresponding account information. Although various MapReduce
join algorithms have been proposed [2, 13], the most widely used
evaluation plan for this query in MapReduce is a repartition join.

Basic MapReduce Solution: The mappers read both log records
(from multiple log files) and reference records, tag each record to
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indicate whether it is a log or reference record, and output the ex-
tracted join key (account id) and the tagged record as a key-value
pair. This output is grouped by the join key and fed to the reduc-
ers, where a cross product between the log records and reference
records of each group is performed.

4.2 Improved Log Processing On CoHadoop
As described in Section 4.1, the basic MapReduce solutions to

both sessionization and join queries are repartition-based. How-
ever, repartitioning the data is an expensive operation in MapRe-
duce because it requires local sorting in each mapper, shuffling
data across the network, and merging of sorted files in each re-
ducer. However, it is well-known that data repartitioning can be
avoided if the data are already organized into partitions that corre-
spond to the query. Figure 2 shows an example with two log files of
transactions (A and B) and a reference file of account information
(R). Instead of directly copying the files to HDFS, we can intro-
duce a preprocessing step at load time in which we partition both
log files and the reference file by account id; see Figure 2. Notice
that unlike Hadoop++ [6], which requires all the input files to be
loaded and partitioned by a single MapReduce job, CoHadoop can
load files incrementally and in different jobs by reusing the same
partitioning function across the jobs. After partitioning the data,
sessionization and join queries can be evaluated by a map-only job.
For sessionization, each mapper reads the corresponding partitions
from A and B (e.g., A1 and B1), groups all the records by account
id, and divides each group into sessions. For join, each mapper
takes as input the corresponding partitions from A, B and R (e.g.,
A1, B1 and R1) and performs a join of the R partition with the
union of partitions A and B.

Pre-partitioning the data improves the performance by eliminat-
ing the expensive data shuffling operation, but each mapper still has
to pay some network overhead. The default data placement policy
of HDFS arbitrarily places partitions across the cluster so that map-
pers often have to read the corresponding partitions from remote
nodes. This network overhead can be eliminated by colocating the
corresponding partitions, i.e., storing them on the same set of data-
nodes. Figure 3 demonstrates how such colocation avoids network
overhead in the context of the sessionization query. In the following
sections, we discuss in more detail how to exploit CoHadoop’s lo-
cators to partition and colocate data, and how to exploit colocation
for sessionization and join queries.

4.2.1 Partitioning and Colocating Data
We implement data partitioning using a single MapReduce job.

Each log file is partitioned using the same partitioning function; this
ensures that the generated partitions contain the same key ranges.
To colocate corresponding partitions (same key range) from all
files, we create a new locator for each key range and assign this
locator to all corresponding partitions. Given the desired number
of partitions, this is done by creating and passing a list of locators
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Figure 3: Sessionization without colocation vs. with colocation.

to Hadoop’s job configuration; the first locator in the list is assigned
to the first key range and so on. A specially designed output for-
mat assigns the correct locators to each output partition when writ-
ten to HDFS by a reducer. Since the same list of locators is used
to partition each log file, corresponding partitions are assigned the
same locator and are thus colocated. When additional log files are
ingested, we simply run the just-described job on the new data, us-
ing the same partitioning function and list of locators. Note that
our approach ensures that the records in each individual partition
are sorted by the partitioning key (since this key is used to assign
records to reducers).

One issue to consider while partitioning the data is the size of
each partition. On the one hand, a large partition size produces a
smaller number of partitions and hence smaller number of files. But
recall that each mapper accesses all corresponding partitions. Map-
pers working on large partitions thus process a lot of data, which
increases the cost of recovery in the case of failure. On the other
hand, a small partition size would fit better with Hadoop’s basic
flow and recovery model, but will create many files. We investi-
gated the effect of partition size in our experiments (see Section
5.2) and found that small partition sizes work best with colocation,
even though a larger number of files is produced.

Another issue that may arise is skew in the partition sizes due to
a skewed distribution of the partitioning key. The algorithms and
techniques proposed in this paper can handle mild skew (see Sec-
tion 9.2.3). Handling highly-skewed data requires more sophisti-
cated algorithms and techniques [5], which are orthogonal to colo-
cation and beyond the scope of this paper.

4.2.2 Sessionization Query
We implement the sessionization query using a merge-based

algorithm as a map-only job. The query takes m log datasets
D1, D2, . . . , Dm as input. Each dataset Di is partitioned into s
partitions Di1, Di2, . . . , Dis. As corresponding partitions from
different datasets contain the same key ranges, each single mapper
Mj needs to process one of the s partitions from each of the m in-
put datasets (D1j , D2j , . . . , Dmj) simultaneously. We designed a
special input format called MergeInputFormat, which merges
the s partitions into a single input split as shown in Figure 2. After
assigning partitions to mappers, record readers start consuming the
input records. Here we exploit the fact that the partitions are sorted
by the partitioning key (see Section 4.2.1): Record readers dynam-
ically merge the sorted partitions into an sorted input stream. This
ensures that the key-value pairs seen by mappers are already sorted
by the partitioning key. The map function simply gathers all the
log records for a given key, sorts by time stamp, and divides the log
records into sessions.

4.2.3 Join Query
The join query is implemented using a hash-based map-side join
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algorithm [2]. For this query, there is an extra reference dataset
R in addition to the log datasets D1, D2, . . . , Dm. The reference
data R is partitioned in the same way as the log datasets; we ob-
tain R1, R2, . . . , Rs. As shown in Figure 2, each input split for
the join algorithm consists of a reference partition plus the cor-
responding set of log partitions. In each input split, the records
from all the log partitions need to be joined with the reference
records. To implement the hash-based algorithm, we make use of
another input format called SequentialInputFormat. The
SequentialInputFormat first reads all the records from the
reference partition,2 followed by the records from each of the log
partitions in sequential order. Each mapper builds an in-memory
hash table using the keys from the reference dataset, and probes
this hash-table using the keys from the log datasets to produce the
join output.

5. EXPERIMENTS
We empirically evaluated the performance of CoHadoop by

studying (1) the effect of various configuration parameters on data
colocation—such as partition size and replication factor—, and (2)
the impact of data colocation on the load time, data distribution,
and fault tolerance. We compared CoHadoop with plain Hadoop
(version 0.20.2) under two different data layouts: (a) Data are nei-
ther partitioned nor colocated (referred to as RawHadoop), and (b)
Data are partitioned but not colocated (referred to as ParHadoop).
We also compared CoHadoop with Hadoop++ [6], the state-of-the-
art solution for pre-processing and partitioning the data in Hadoop
for joins.

Cluster Setup. The experiments were evaluated on a 41-node
IBM SystemX iDataPlex dx340. Each server consisted of two
quad-core Intel Xeon E5540 64-bit 2.8GHz processors, 32GB
RAM, 4 SATA disks, and interconnected using 1GB Ethernet. Each
server ran Ubuntu Linux (kernel version 2.6.32-24), IBM Java
1.6, Hadoop 0.20.2. Hadoop’s master processes (MapReduce job-
tracker and HDFS namenode) were installed on one server and the
remaining 40 servers were used as workers. Each worker was con-
figured to run up to 6 map and 2 reduce tasks concurrently. The fol-
lowing configuration parameters were overridden in order to boost
performance: sort buffer size was set to 512MB, JVM’s were re-
used, speculative execution was turned off, and a maximum of 6GB
JVM heap space was used per task. The replication factor was set to
3 unless stated otherwise. All experiments were repeated 3 or more
times. We report the average of those measurements; the measure-
ments were within ±5% of the mean.

Datasets. We generated synthetic transactional data that sim-
ulate the log-processing scenario discussed in Section 4.1. We
generated two types of data: Accounts (reference data) and
Transactions (log data). Each account has zero or more
2Note that reference partitions are in general much smaller than the
corresponding log partitions and fit in memory.

transactions. Each Accounts record is 50 bytes in size and
contains an AccountId field (8 bytes) and other fields. Each
Transactions record is 500 bytes in size and contains an
AccountId (8 bytes) and a Timestamp (8 bytes) and some
other data fields. The number of transactions for each AccountId
follows a log-normal distribution with µ = lg 10 and σ = 1,
which is a representative distribution for our client’s data. The
Timestamp values are uniformly selected from a specified time
range. We assume that the transaction data are collected from mul-
tiple servers, which is typical in Hadoop and log processing appli-
cations. In the experiments, we consider seven transaction datasets
within the scope of the queries. We keep the size of the Accounts
dataset constant at 10GB while varying the size of the transaction
datasets as reported in the figures. In CoHadoop and ParHadoop,
datasets are hash-partitioned into files on the AccountId field.
The number of files is controlled such that the resulting file size is
within ±5% of the HDFS block size. Note that the way we gener-
ate the colocated partitions results in a quite balanced distribution.
This is because (1) each locator is associated with the same num-
ber of partitions, (2) all partitions are roughly similar in size, and
(3) all partitions for the same transaction dataset (one partition for
each locator) are generated in parallel at the same time, and hence
locators are well distributed over the cluster. In Appendix 9.2.3, we
study the performance using a more skewed distribution.

Queries. We consider two types of queries as highlighted
in Section 4.1: (1) A join queries between the Accounts and
Transactions datasets based on the AccountId field, and (2)
sessionization queries over the Transactions datasets where
transactions belonging to the same account are grouped together
and then divided into sessions based on a 30 minutes time window.
In RawHadoop, these queries are implemented as a MapReduce
job. In CoHadoop and ParHadoop, the datasets are already pre-
partitioned so that we use map-only jobs.

5.1 Data Loading
In our first experiment, we compared the time needed to

pre-process and load a dataset by CoHadoop, ParHadoop, and
Hadoop++. We also measured the time needed to pre-process and
load an additional dataset to the dataset (incremental upload). To
load a dataset, each of the three systems performed a full MapRe-
duce job, in which (1) ParHadoop partitions the data, (2) CoHadoop
partitions and colocates the data, and (3) Hadoop++ co-partitions
the data and creates the Trojan indexes.3 As shown in Figure 4,
CoHadoop and ParHadoop have similar performance. CoHadoop
is slightly slower due to increased network utilization: ParHadoop
always writes the first copy of a partition locally, while CoHadoop
may write all copies to remote nodes (if indicated so in the locator
table). Note that the pre-processing and loading cost encountered
by CoHadoop is very small compared to the savings at query time;
e.g., the pre-processing cost is redeemed by a single sessionization
query (Figure 5a). In contrast, Hadoop++ incurs a significant run-
time overhead; it takes more than twice as much time as ParHadoop
or CoHadoop.

To study the performance of incremental upload, we ingest an
additional dataset to the already loaded datasets.4 CoHadoop and
ParHadoop need to only pre-process this new dataset (by perform-
ing a MapReduce job on that dataset), whereas Hadoop++ needs
to rerun the co-partitioning and indexing process over the entire
datasets, including the new dataset. Figure 4 shows that CoHadoop

3The time taken to convert the data from its natural format to
Hadoop++’s format is excluded from the figures.
4The size of the new dataset equals the size of each of the seven
datasets, i.e., ≈15% of the Transactions data size.
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Figure 5: Performance of sessionization and join queries.

and ParHadoop can quickly ingest the additional dataset, whereas
Hadoop++ incurs a cost higher than that of creating the original
partitions.

5.2 Partition Sizes
We studied the effect of the partition size for different dataset

sizes on the query response time. Figure 5 shows the results from
the join and sessionization queries under HDFS block sizes of
64MB, 256MB, and 512MB.5 The figure shows that data partition-
ing can significantly improve the performance, and that the best
performance is achieved when the corresponding partitions are ad-
ditionally colocated. For example, in the sessionization query (Fig-
ure 5a), ParHadoop saves up to 75% of RawHadoop’s response
time. This is because ParHadoop executes map-only jobs, and
hence avoids the data shuffling/sorting phase as well as the re-
duce phase. For the same query, CoHadoop saves up to 60% of
ParHadoop’s response time, i.e., up to 93% of RawHadoop’s re-
sponse time. This is because reading the data locally is much faster
than reading data over the network, especially when the data is
large and the network is saturated.

In Figure 6, we keep the dataset size constant at 1120GB and
zoom in to report the query response time under the three parti-
tion sizes. The figure shows that RawHadoop’s preformance im-
proves by 5% (10%) when the HDFS block size increases from
64MB to 256MB (512MB). In contrast, ParHadoop and CoHadoop
slow down slightly; 5% (20%) for these block sizes. The reason
for this difference in behavior is that RawHadoop launches seven
times more mappers than ParHadoop and CoHadoop (recall that
each map task in ParHadoop or CoHadoop processes seven cor-
responding partitions). Larger block sizes lead to fewer number of
splits, which in turn reduces RawHadoop’s overhead of starting and
scheduling map tasks. With respect to ParHadoop and CoHadoop,
the increased block size leads to a smaller number of partitions
(since we set block size = partition size); each mapper thus pro-
cesses much more data (up to 3.5GB), which has a negative impact
on performance. We conclude that the smaller the partition sizes,
the better the performance of CoHadoop.

The results of the join query (Figures 5b and 6b) exhibit a sim-
ilar trend. For fairness, we made sure that the map-only tasks in
ParHadoop are scheduled on datanodes containing at least one of
the transaction files. Therefore, only the smaller account file and
the remaining transaction files are shipped to the map tasks. The
relative savings due to colocation are less than in the case of ses-
sionization; e.g., ParHadoop and CoHadoop save up to 40% and
60%, respectively, of RawHadoop’s response time. The main rea-

5We use terms block size and partition size interchangeably since
the partition size is kept within ±5% of the HDFS block size.
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Figure 7: Data distribution over the cluster.

son for the reduced saving is that the join query’s output is around
two orders of magnitude larger than that of the sessionization query.
Thus a significant amount of time is spent in writing the output to
HDFS (same for each approach).

5.3 Data Distribution and Fault Tolerance
Next, we investigated the impact of colocation on data distribu-

tion and fault tolerance. While RawHadoop and ParHadoop try
to evenly distribute the data on the cluster, CoHadoop additionally
tries to colocate related files whenever possible. In Figure 7a, we
show the data distribution over the cluster for block size of 64MB.
The x-axis represents the cluster nodes sorted in an increasing or-
der of used disk space, which in turn is shown in gigabytes (GB)
on the y-axis. As can be seen, colocation only slightly disturbs the
distribution of the data over the cluster nodes: The data are still
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spread out and not concentrated at a few of nodes. Under larger
block sizes, e.g., 256MB and 512MB, the three systems show simi-
lar trends, but the variation of the data distribution increases. This is
shown in Figure 7b, where we report the coefficient of variation (the
standard deviation divided by the mean) of the disk space for differ-
ent block sizes. We observe that CoHadoop has 3–5 times higher
variation than the other systems. The increase in variation is related
to the number of colocated files (here 7); see Appendix 9.1.2 for
analytical results and Appendix 9.2.2 for additional experiments.
Note that the variation in all approaches increases as the block sizes
increases: Larger block sizes and the resulting smaller number of
data blocks make load balancing more coarse-grained.

We compared RawHadoop, ParHadoop, and CoHadoop to ex-
amine the effect of colocation on failure recovery. We performed
a node failure experiment similar to the ones done in [6, 1]: We
first set Hadoop’s expiry interval to 60 seconds so that a node is
considered down if we do not receive a heartbeart from it within
a 60s window. Then, after 50% of the job’s work is done, we
randomly select a node to kill and measure how much this slows
down processing. In Figure 8, we report the results for the session-
ization query and HDFS block sizes of 64MB and 512MB. The
dataset size is 1120GB. The slowdown percentage (y-axis) is given
by |t′− t|/t (as in [6]), where t is the query execution time without
failure and t′ is the execution time with failure. As a baseline, we
also include the slowdown percentage of RawHadoop in Figure 8.
Not surprisingly, RawHadoop has the highest slowdown percent-
age. This is because RawHadoop performs a full MapReduce job
instead of a map-only job, and hence a node failure causes all map
tasks that are executed on the failed node to be re-executed, the
output from these mappers to be re-shuffled, and the reducers on
the failed node to be (re-)executed as a second wave of reducers.
Faster recovery due to the map-only jobs is an advantage of Co-
Hadoop and ParHadoop, further strengthening the importance of
co-partitioning. As the figure shows, the slowdown percentage is
higher for a block size of 512MB because the amount of interme-
diate results lost due to the failure is higher. The figure also shows
that CoHadoop and ParHadoop have almost the same slowdown
percentage, which indicates that data colocation does not affect the
fault tolerance in Hadoop.

5.4 Replication Factor
As mentioned previously, Hadoop creates multiple replicas of

the data for both recovery purpose as well as for flexible schedul-
ing of jobs. Hadoop’s scheduler does a best-effort scheduling to
assign map tasks to nodes that contain all (or portions of) the input
data; these tasks are called data-local map tasks. As the replica-
tion factor increases, the percentage of data-local map tasks is ex-
pected to increase as well. In this section, we study the effect of the
replication factor on query response time and investigate whether
or not CoHadoop is more sensitive to the replication factor than
the other systems. In Figure 9, we present results for the session-
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(a) Performance under different replication factors.
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ization query with an HDFS block size of 64MB and replication
factors between 1 and 3. Figure 9a shows the absolute response
times while Figure 9b shows average speed-up (over the five dataset
sizes) w.r.t. replication factor 1. The speed-up percentage is defined
as (t1 − tr)/t1, where tr is the time taken under replication factor
r. As expected, an increased number of replica lead to faster pro-
cessing times. As the replication factor increases from 1 to 2 to 3,
the average fraction of data-local map tasks increases from 78% to
90% to 97%, respectively. Interestingly, CoHadoop has the high-
est speed-up and thus benefits most from replication. To see why,
observe that in contrast to ParHadoop and RawHadoop, which read
most of the input partitions remotely, a data-local map tasks in Co-
Hadoop reads all its input partitions locally.

5.5 Comparison with Hadoop++
We compared CoHadoop with Hadoop++ [6], which is the clos-

est to our work in that it also exploits data pre-partitioning and
colocation. We focus only on the join query since it is the one
considered in [6]. The HDFS block size is set to 256MB. We did
minimal changes to Hadoop++ that include: (1) merging the seven
transaction datasets into one because Hadoop++ colocates only two
datasets (a reference and a transaction dataset), and (2) writing a
converter program that converts our binary format to Hadoop++ bi-
nary format. The results in Figure 10 illustrate that CoHadoop out-
performs Hadoop++ by around 20% to 55%. In addition to its bet-
ter performance, CoHadoop is more suitable for applications that
continuously ingest new data because of its incremental nature in
colocating new files.



6. RELATED WORK
Recent benchmarks have identified a performance gap between

Hadoop and parallel databases [14, 16, 10]. There has been con-
siderable interest [1, 6, 10] in enriching Hadoop with techniques
from parallel databases, while retaining Hadoop’s flexibility. Our
work in CoHadoop continues this line of research. Jiang et al. [10]
conduct an intensive benchmark of various parts of Hadoop’s pro-
cessing pipeline. They found that (among others) indexing and
map-side “partition joins” can greatly improve Hadoop’s perfor-
mance. In contrast to our work, they do not colocate partitioned
data fragments. HadoopDB [1] and Hadoop++ [6] are closest to
our work in spirit because they also try to colocate data. In contrast
to our work, however, this is done by changing the physical layout:
HadoopDB replaces HDFS by full-fledged relational databases,
whereas Hadoop++ injects indexes and copartitioned data directly
into raw data files. HadoopDB breaks the programming model and
simplicity of MapReduce; it can be viewed as “another parallel
database” [6]. Hadoop++ is less intrusive: colocated data (such
as indexes and copartitions for joins) are stored as “Trojans” within
HDFS files and splits; no changes to Hadoop itself are required. In
contrast to CoHadoop, however, colocation in Hadoop++ is static
and done at load time: any change of desired indexes, copartition-
ing, or even arrival of new data forces Hadoop++ to reorganize the
entire dataset. Moreover, their colocation is geared toward joins
and hence they can only colocate two files, whereas CoHadoop is
pretty flexible in terms of the queries it can support, and number of
files it can colocate.

Cheetah [3] and Hive [19] are two data warehousing solutions
on Hadoop, and borrow many ideas from parallel databases. But,
neither supports colocation and its exploitation. GridBatch [11] is
another extension to Hadoop with several new operators, as well as
a new file type, which is partitioned by a user-defined partitioning
function. GridBatch allows applications to specify files that need
to be colocated as well. Their solution intermixes partitioning and
colocation at the file system level, whereas CoHadoop decouples
them so that different applications can use different methods to de-
fine related files. In this respect, CoHadoop can colocate related
files defined by other means than partitioning, such as column files
in a columnar storage format.

CoHadoop is heavily inspired by the more advanced partition-
ing features of parallel database systems [20], such as IBM DB2,
TeraData, Aster Data nCluster, Vertica, Infobright, and Greenplum.
In these systems, tables are copartitioned, and the query optimizer
exploits this fact to generate efficient query plans [7]. CoHadoop
adapts these ideas to the MapReduce infrastructure, while retaining
Hadoop’s dynamicity and flexibility. To achieve this, our approach
differs from parallel databases in that we separate partitioning and
colocation. Partitioning is controlled either directly by applications
or by higher-level query languages such as Jaql [9], Pig [12], or
Hive [19], which allow usage of non-relational data and a wide va-
riety of partitioning rules. CoHadoop performs colocation at the
file-system level and in a best-effort manner: When space con-
straints or failures prevent colocation, CoHadoop prioritizes high
availability and fault tolerance.

The latest version of HDFS (0.21, released on August 23rd,
2010) provides a new API to override the default block placement
policy, enabling applications to control placement of replicas by
providing a custom Java class. Our data placement policy can be
incorporated into HDFS using this API, which decreases the cost
of code maintenance as new releases of HDFS becomes available.
(The locator property associated with files is still needed, though.)

7. CONCLUSION

We presented CoHadoop, a lightweight solution for colocating
related files in HDFS. Our approach to colocation is simple yet
flexible; it can be exploited in different ways by different appli-
cations. We identified two use cases—join and sessionization—in
the context of log processing and described map-only algorithms
that exploit colocated partitions. We studied the performance of
CoHadoop under different settings and compared it with both plain
Hadoop solutions and map-only algorithms that work on partitioned
data without colocation. Our experiments indicate that copartition-
ing and colocation together provide the best performance. Both
theoretical analysis and experiments suggest that CoHadoop main-
tains the fault tolerance characteristics of Hadoop to a large extent.
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Symbol Description

n Total number of nodes
k Number of failed nodes
m Number of datasets to colocate
s Number of partitions per dataset
r Replication factor
Di Dataset i, i ∈ {1, . . . ,m}
Dij Partition j of data set Di

Llij Indicator variable for the event that node l stores
a replica of partition Dij

Rij Number of alive replicas of partition Dij

X Total number of partitions lost, X =
∑

i,j IRij=0

Cl I/O load of node l without failures
C fail

l I/O load of node l after 1 failure

Table 1: Summary of notation

9. APPENDIX

9.1 Analysis of CoHadoop
We derive a simple probabilistic model of block placement to

compare the fault tolerance and data distribution characteristics of
HDFS with and without colocation. The model notations are sum-
marized in Table 1. Suppose that the cluster consists of n nodes
and that we store m datasets Di of s partitions Dij each, i.e.,
Di = {Di1, . . . , Dis } for 1 ≤ i ≤ m. Each partition is stored
in a separate file. For each j, we colocate partitions D1j through
Dmj for efficient processing, i.e., we model the setup of Section 4.
Let r be the desired number of replicas and let Llij be an indicator
variable for the event that node l stores a replica of partition Dij .
Initially, we have

∑
l Llij = r for all i, j. We assume throughout

that whenever a partition Dij is read, one of its replicas is chosen
at random. When multiple partitions are accessed in a single job,
replicas are selected independently (no colocation) or from a sin-
gle node (with colocation). Finally, we assume that each node has
sufficient disk space to store all the partitions assigned to it, that all
partitions have equal size, and that partitions are small enough so
that their files are not split across multiple nodes. These assump-
tions appear reasonable in practice: We expect users of colocation
(such as Jaql) to ensure that partitions are balanced and reasonably
small (e.g., ≤512MB).

9.1.1 Data Loss
We analyze the probability and amount of a data loss when k ≥ r

nodes of the cluster fail.6 Without loss of generality, we assume that
the first k nodes fail.

Without colocation. Let’s analyze the default block placement
of Hadoop first. Set L∗ij = (L1ij , . . . , Lnij); this vector indicates
for each node whether it stores a replica of partition Dij . By de-
fault, HDFS randomly distributes the replicas such that each set of
r distinct nodes is selected equally likely. Thus, L∗ij has distribu-
tion

Pr [L∗ij = l ] =

{(
n
r

)−1 if
∑

l ll = r

0 otherwise.
(1)

for l ∈ { 0, 1 }n. Partition Dij is lost when all of its r repli-
cas are located on the set of failing nodes, or equivalently, when

6If k < r, no data loss occurs.

m Colocation? No. failed nodes (k)
2 3 4 5

2 No 0% 18% 55% 86%
(1.1) (1.5) (2.3)

Yes 0% 10% 33% 63%
(2.1) (2.4) (3.2)

4 No 0% 33% 80% 98 %
(1.2) (2.0) (4.1)

Yes 0% 10% 33% 63%
(4.2) (4.9) (6.3)

8 No 0% 55% 96% 100%
(1.5) (3.4) (8.1)

Yes 0% 10% 33% 63%
(8.4) (9.7) (12.7)

Table 2: Probability of data loss and expected number of par-
titions lost given that a loss occurs (in parentheses)

∑k
l=1 Llij = r. We obtain the probability of data loss

Pr [X > 0 ] = 1−
∏
i,j

(
1− Pr[

k∑
l=1

Llij = r ]
)

= 1−

[
1−

(
k

r

)
/

(
n

r

)]ms

,

where X denotes the number of lost partitions. By linearity of
expectation, the expected number of partitions lost is given by

E [X ] =
∑
i,j

Pr[

k∑
l=1

Llij = r ] = ms

(
k

r

)
/

(
n

r

)
.

With Colocation. The analysis is similar as before, but the
losses of partitions D1j , D2j , . . . , Dmj are now correlated: either
all or none are lost. Thus a data loss occurs if and only if D1j is
lost for some j:

Pr
[
X ′ > 0

]
= 1−

[
1−

(
k

r

)
/

(
n

r

)]s
,

where we use the prime symbol to mark variables that involve colo-
cated data. The expected number of files lost remains unchanged,
i.e., E [X ′ ] = E [X ].

Interpretation. Table 2 gives an example for n = 40, s = 1000,
r = 3. Note that since we keep s constant, the total amount of data
stored on the cluster increases with m. As argued above, the prob-
ability of losing data with colocation is significantly smaller than
losing data without colocation. In the case of CoHadoop, the prob-
ability of loss is not affected by the number of datasets (because
they are all located at the same sets of nodes). In contrast, the prob-
ability of loss in Hadoop increases as more data is stored on the
cluster (since data is more spread out). The table also shows the
expected loss E [X | X > 0 ] = E [X ]/Pr [X > 0 ] given that a
data loss occurs. Since the expected loss is the same for Hadoop
and CoHadoop (not shown in table), the expected amount of data
loss given that data is lost is higher when data is colocated. Overall,
colocation does not have a negative effect on data loss: multiplying
probability and conditional expected loss gives the same expected
loss for both approaches (up to rounding errors).



9.1.2 Data Distribution
To measure the impact of colocation on data distribution over the

cluster, we derive a simple measure of file system load. The mea-
sure is based on the assumption that all files are read with equal
frequency, and it ignores CPU and network cost. We chose this
measure since it keeps the analysis tractable; more elaborate mod-
els can be built in a similar fashion. Suppose that we read a ran-
domly chosen replica of each partition. Then, the expected number
of partitions read from node l is given by:

Cl =
∑
i,j

Llij/Rij ,

where Rij =
∑

l Llij denotes the number of active replicas of
partition Dij . In an ideal setting, all nodes would be guaranteed to
have the same load. (With our measure of load, this happens only
when r = n.)

Without Colocation. Suppose that there are no failures, i.e.,
Rij = r. From (1), we obtain E [Llij ] = r/n and thus

E [Cl ] =
∑
i,j

E [Ll1j ]/r =
ms

n
.

Observe that the number of replicas does not affect the expected
load per node. To analyze variance, observe that

Var [Llij ] = E
[
L2

lij

]
− E [Llij ]

2 = p(1− p),

with p = r/n. Since different files are placed independently, Llij

and Lli′j′ are independent for i 6= i′ and/or j 6= j′ and thus

Var [Cl ] =
∑
i,j

Var [Ll1j/r ] =
ms

r2
p(1− p).

As expected, Var [Cl ] is monotonically decreasing with increasing
replication factor; it reaches 0 when r = n.

Now suppose that (without loss of generality) node 1 fails. Then,
Rij = r−L1ij , i.e., the replication factor of the files stored at node
1 decreases. Denote by C fail

l the load of a remaining node l 6= 1
after failure. Using the law of total expectation, we have

E [C fail
l ] =

∑
i,j

E [Llij/(r − L1ij) ] =
ms

n− 1
.

as expected. To derive the variance (using the law again), observe
that

Var

[
Llij

r − L1ij

]
=
n2(r − 1)− n(r2 − r − 1)− r

(n− 1)2n(r − 1)r
.

We obtain

Var[C fail
l ] =

ms

r(r − 1)
p′
(
1− p′ + n− r

n(n− 1)(r − 1)

)
≈ ms

r(r − 1)
p′(1− p′),

where p′ = r−1
n−1

. For large n, the difference in variance between
non-failure and failure cases is mainly determined by the replica-
tion factor r; the variance decreases with increasing replication fac-
tor.

With Colocation. With colocation, all replicas of partitionsDij ,
1 ≤ i ≤ m, are placed on the same set of nodes. In our notation,
this means that L′l1j = . . . = L′lmj and R′1j = . . . = R′mj . By
linearity of expectation, the expected load remains unaffected:

E [C′l ] =
ms

n
and E [C′l

fail
] =

ms

n− 1
.

m Colocation? CV [Cl ] CV[C fail
l ]

1 - 11.1% 11.2%

2 No 7.8% 7.9%
Yes 11.1% 11.2%

4 No 5.6% 5.6%
Yes 11.1% 11.2%

8 No 3.9% 4.0%
Yes 11.1% 11.2%

Table 3: Variation of load without (Cl) and with failures (C fail
l )
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Figure 11: Direct I/O vs. socket I/O read.

The terms for variance do change slightly: m is replaced by m2

and we obtain

Var[C′l ] =
∑
j

Var
[
mL′l1j/r

]
≈ m2s

r2
p(1− p)

and

Var[C′l
fail

] ≈ m2s

r(r − 1)
p′(1− p′).

Interpretation. For both non-failure and failure case, coloca-
tion does not affect the expected load Cl on each node. However,
the variance of the load increases by a factor of m when coloca-
tion is used. We use the coefficient of variation (COV) as a mean-
independent measure of variation:

CV [Cl ] =

√
Var [Cl ]

E [Cl ]
.

A value significantly less than one indicates good balancing,
whereas values larger than one indicate a lot of variation. As shown
above, the COV increases by a factor of

√
m when colocation is

used. In practice, the COV is low without colocation, and so this
increase is often negligible. Table 3 shows an example for n = 40,
s = 1000, and r = 3. Note that the number of datasets (and thus
the total data size) doubles in each row. Without colocation, the
COV decreases as the number of datasets increases; the increased
number of files makes an uneven distribution less likely. With colo-
cation, the COV remains unaffected by the number of colocated
datasets since the location of each colocated set is decided by the
first copy of that set.

9.2 Performance Discussion

9.2.1 Direct vs. Socket I/O Read
We studied the performance of CoHadoop under two different

I/O modes: (1) Direct read, where local data are read through direct
disk I/O, and (2) socket read, where local data are read through
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Hadoop’s inter-process communication layer (socket layer) in the
same way as the remote data are read. For that purpose, we applied
an online JIRA patch available at https://issues.apache.
org/jira/browse/HDFS-347.

Unlike the micro-benchmark experiment in [10] which runs on
a one-node cluster and focuses only on streaming the data through
a map function, we use the sessionization query as a more typ-
ical workload that involves both CPU and data output costs. In
Figure 11, we report the results under 64MB and 512MB HDFS
block sizes. The results illustrate that, for the sessionization query,
direct read does not outperform socket read by much. As the fig-
ure shows, most of the data points have at most 1% to 5% speed-
up when using direct disk I/O, where the speed-up is defined as
(tsocket − tdirect/tsocket).

9.2.2 Number of Colocated Files
One of the key factors that affect the performance of CoHadoop

and how the data are distributed over the cluster is the number of
colocated files. In the experiment section (Section 5), we fixed the
number of colocated files to seven (for the sessionization query)
and eight (for the join query). In this section, we gradually increase
the number of colocated files and measure the effect on the data
distribution over the cluster (Figure 12). We use 8 transaction files
of size 250GB each, and we assign locators as follows: In the No
Colocation case, the partitions are not assigned locators, and hence
they are stored according to the HDFS’s default placement policy.
In the 2-Way Colocation case, we assign the same locator to the
corresponding partitions from files i and i + 1, for i = 1, 3, 5, 7.
Similarly, in the 4-Way Colocation case, we assign the same locator
to the corresponding partitions from files i, i+ 1, i+ 2, and i+ 3,
for i = 1, 5. And in the 8-Way Colocation case, we assign the same
locator to the corresponding partitions from all transaction files.

The key observation from the figure is that as we gradually in-
crease the number of colocated files, the variation of the data dis-
tribution over the cluster also increases gradually. Additionally, the
empirically observed variations are slightly higher than expected
from our theoretical analysis (Section 9.1.2). This is because the
cluster disks are not initially empty and the data partitions of a
given transaction file do not have the same size, as we have as-
sumed in Section 9.1.2.

9.2.3 Distribution of Transactions
Throughout the experiment section (Section 5), we used a log-

normal distribution for the number of generated transactions per
account in each log file. Our choice of parameters (µ = lg 10 and
σ = 1) typically generates datasets with low skew. In this section,
we test the resilience of CoHadoop to mild skew by increasing σ
to 2, which in turn increases the variance of the distribution by a
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factor of roughly 387. We use an HDFS block size of 64MB and a
replication factor of 3.

In Figure 13, we plot the data load over the cluster for the mildly-
skewed distribution (As before, the x-axis represents the cluster
nodes sorted in an increasing order of used storage). Comparing
Figure 13 to Figure 7, we observe that CoHadoop encounters more
variation in the data distribution over the cluster when more skew
is added to the data, whereas RawHadoop and ParHadoop do not
change much. This behavior is expected since the latter systems
blindly divide the data into equal-sized blocks regardless of the data
content, and independently distribute these blocks over the cluster.
In contrast, CoHadoop treats all colocated partitions as one unit.
Since the size of these partitions varies more in the case of skew,
the variation of the used storage over the cluster increases as ob-
served in Figure 13. Despite this increase in storage variation, the
query performance remains almost unaffected, as discussed next.

In Figure 14, we compare the performance of the session-
ization query under the two different distribution parameters
(For the mildly-skewed distribution, the labels are suffixed with
‘mildSkew’). As the figure shows, the effect of the data distribu-
tion on query performance is negligible. The reason is that, in the
sessionization query, each map task in CoHadoop and ParHadoop
will process 7 files that vary in their sizes and it is very unlikely
that all of the 7 files processed by a single map task will be large
in size. Moreover, the entire sessionization query runs 10 waves of
map tasks, therefore even if some map tasks will take more time to
complete (because of the skew), the other map tasks will be running
on the other empty slots which balances out the overall execution
time.


