
Distributed Graph Summarization

Xingjie Liu∗ Yuanyuan Tian† Qi He�
∗

Wang-Chien Lee§ John McPherson†
∗ Square Inc jliu@squareup.com

† IBM Almaden Research Center {ytian, jmcphers}@us.ibm.com
� LinkedIn Inc qhe@linkedin.com

§ The Pennsylvania State University wlee@cse.psu.edu

ABSTRACT
Graph has been a ubiquitous and essential data representation to
model real world objects and their relationships. Today, large amounts
of graph data have been generated by various applications. Graph
summarization techniques are crucial in uncovering useful insights
about the patterns hidden in the underlying data. However, all ex-
isting works in graph summarization are single-process solutions,
and as a result cannot scale to large graphs. In this paper, we intro-
duce three distributed graph summarization algorithms to address
this problem. Experimental results show that the proposed algo-
rithms can produce good quality summaries and scale well with
increasing data sizes. To the best of our knowledge, this is the first
work to study distributed graph summarization methods.

1. INTRODUCTION
Graph has been a ubiquitous and essential data representation

to model real world objects and their relationships. Today, large
amounts of graph data have been generated by various applications,
including social networks, biological networks, WWW, etc. With
the overwhelming wealth of information encoded in these graphs,
there is a crucial need for tools to summarize large graphs into con-
cise forms that can be easily understood.

Graph summarization has attracted a lot of research interests re-
cently. Various graph summarization techniques [12, 9, 13] have
been proposed to help users extract and understand the information
encoded in large graphs. The goal of graph summarization methods
is to produce a compact and informative summary graph that un-
covers the underlying topology characteristics of the original graph.
For example, Figure 1(b) and Figure 1(c) show two summaries of
the original graph G in Figure 1(a). The summaries themselves
are also graphs. Every node in a summary, called a super-node,
contains a set of nodes from the original graph. Every edge in a
summary, called a super-edge, represents restrictively an all-to-all
relationship between the nodes in the corresponding super-nodes.
For example, in Figure 1(b), the super-edge between V1 and V2

means that every node in V1 (v1) is connected to every node in V2

∗This work was done while this author was in IBM Almaden Re-
search Center.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CIKM’14, November 3–7, 2014, Shanghai, China.
Copyright 2014 ACM 978-1-4503-2598-1/14/11 ...$15.00.
http://dx.doi.org/10.1145/2661829.2661862.

v4

v3

v1

v6

v2

v5

(a) Example G

V3

V1

V2

V4

{v1}

{v2, v3}

{v4}

{v5, v6}

(b) Summary S1

{v1, v2, v3}

{v4, v5, v6}

V1

V2

(c) Summary S2

Figure 1: Graph Summarization Example

(v2 and v3). Notice that not all summaries are lossless. The sum-
mary graph in Figure 1(b) exactly recreates the original graph, but
the summary graph in Figure 1(c) reconstructs into a graph differ-
ent from the original. In particular, the edge 〈v2, v4〉 is present in
the original graph but is missing in the summary, whereas the edge
〈v2, v3〉 is spurious in the summary as it does not exist in the orig-
inal graph. The total number of missing and spurious edges is the
error associated a summary graph. Intuitively, a smaller summary,
which is easier to visualize and understand, also tends to introduce
more errors. Therefore, the challenge for graph summarization is
to produce relatively small summaries while minimizing the errors.

With the skyrocketing expansion of graph data size in recent
years, mining and visualizing large graphs become more and more
difficult. Graph summarization can be used to help compress large
graphs into more manageable size to visualize and study. Since
the summaries are also graphs themselves, investigation of various
graph properties can be conducted on the summary graphs instead.
Although there are several existing graph summarization methods
that are quite effective and efficient in producing summaries [9,
12], all of them are single-process in-memory solutions. Process-
ing millions to billions of nodes and edges (with intermediate data
structures) easily requires more memory than provided in a single
machine and parallelization of computation for efficiency. This pa-
per exactly addresses this need. To the best of our knowledge, this
is the first work to study distributed graph summarization methods.

There are a number of challenges for implementing distributed
graph summarization algorithms. First of all, as nodes and edges
are distributed in different machines, a seemingly simple operation
in the centralized graph summarization algorithm requires message
passing and careful coordination across multiple node in the dis-
tributed environment. Secondly, the centralized algorithm doesn’t
need to worry about how computation is distributed, but a good dis-
tributed graph summarization method should fully distribute com-
putation across different machines for efficient parallelization. Last
but not the least, as computation and communication costs will be
the dominating factors in the distributed graph summarization al-

gorithm, smart techniques are needed to avoid unnecessary com-
munication and computation as much as possible.

In this paper, we proposed three distributed algorithms for large
scale graph summarization, implemented on top of Apache Giraph
(giraph.apache.org), an open source distributed graph pro-
cessing platform. The first algorithm, DistGreedy, is a non-trivial
adaptation of a centralized greedy algorithm. However, the greedi-
ness of this algorithm requires examining all pairs of nodes with
2-hop distance, thus causes a large amount of computation and
communication cost. The second algorithm, called Dist-Random,
reduces the number of examined node pairs using random selec-
tion. But randomness negatively affects the effectiveness of the al-
gorithm. Our last algorithm, Dist-LSH, addresses the limitations of
the previous two algorithms. It employs a novel technique called,
Striped-MinHash, to directly pinpoint the good candidates for ex-
amination, thus completely eliminate the computation and the net-
work cost associated with unnecessary examinations. Through ex-
periments we demonstrate the effectiveness and efficiency of the
proposed algorithms. Although the proposed algorithms are evalu-
ated under Apache Giraph, they are generic for other parallel pro-
cessing frameworks because data and computations are partitioned
into each graph summary nodes.

2. PRELIMINARIES
Graph summarization was first proposed independently by [12]

and [9] in 2008. In both works, a summary graph is defined as a
compact graph representing the original graph topology (see Fig-
ure 1), and graph summarization is the process to construct a sum-
mary graph from a given graph. The two works differ mainly in
whether the nodes in the original graph are of the same type in
the problem definition. In this work, we adopt the same setting as
in [9], i.e., all nodes are of the same type. For ease of presentation,
we consider only undirected graphs in this paper. Adapting meth-
ods discussed in this paper for directed graphs is fairly straightfor-
ward, hence omitted due to space limit.

Given a graph G = (V,E), a summary graph for G is de-
noted as S(G) = (VS , ES). The summary S(G) is an aggre-
gated graph, in which VS = {V1,V2, · · · ,Vk} is a partition of
the nodes in V (

⋃k
i=1 Vi = V and ∀i 6= j, Vi

⋂
Vj = ∅). We

call each Vi a super-node, representing an aggregation of a subset
of the original nodes. For simplicity, we use V(v) to denote the
super-node that an original node v belongs to. In addition, Each
〈Vi,Vj〉 ∈ ES is called a super-edge, representing all-to-all con-
nections between nodes in Vi and nodes in Vj . In other words,
∀vm ∈ Vi, vn ∈ Vj , 〈vm, vn〉 ∈ 〈Vi,Vj〉. Due to the all-to-all
connection representation of super-edges, a graph summarization
process may introduce information loss. Let Πi,j denote the all-
to-all connections between the two corresponding node sets Vi and
Vj , and Ai,j represent the set of actual edges between them in the
original graph. If the super-edge 〈Vi,Vj〉 exists in the summary
graph, then |Πi,j | − |Ai,j | spurious edges are introduced. Oth-
erwise, |Ai,j | edges are missing from the summary graph. More
formally, we define the error associated with a pair of super-nodes
Vi and Vj in a summary graph as follows:

ei,j =

{
|Πi,j | − |Ai,j |, if 〈Vi,Vj〉 ∈ ES

|Ai,j |, if 〈Vi,Vj〉 6∈ ES .
(1)

Accordingly, the total error for a summary graph S(G) can be
defined as E(S(G)) =

∑|VS |
i=1

∑|VS |
j=1 ei,j .

Once a user selects a summary resolution, i.e. the number of
super-nodes, naturally our goal is to generate a summary graph that
minimizes the total error.

Graph Summarization Problem: Given a graph G and a desired
number of super-nodes k, compute a summary graph S(G) with k
super-nodes, such that the summary error is minimized.

It has been proved that graph summarization is NP-hard [12].
The difficult part is determining the super-nodes VS , Once the super-
nodes are decided, constructing the super-edges with minimum sum-
mary error can be achieved in polynomial time.

Recall that the error between a pair of super-nodes Vi and Vj
comes from either |Πi,j | − |Ai,j | spurious edges, or |Ai,j | missing
edges. Accordingly, the optimal edge assignment strategy is simply
adding an super-edge 〈Vi,Vj〉 when |Ai,j | < 1

2
|Πi,j |, or leaving

Vi and Vj unconnected otherwise.
Under this super-edge assignment strategy, the connection error

among each pair of super-nodes Vi and Vj is:

e∗i,j = min{|Πi,j | − |Ai,j |, |Ai,j |}. (2)

Thus, the graph summarization problem is essentially the prob-
lem of determining the k super-nodes.

Centralized Algorithms. In [9], two centralized heuristic-based
algorithms for graph summarization, Greedy and Random, are pro-
posed. Although our graph summarization definition is slightly dif-
ferent, these two algorithms are still applicable after minor changes.
Below, we will briefly describe the two centralized algorithms, as
they serve as the baseline for our distributed algorithms.

Both the greedy and the randomized algorithms start with a sum-
mary graph initialized as the original graph, and iteratively merge a
pair of super-nodes into one super-node to form a summary graph
with a lower resolution, until k super-nodes remain in the final sum-
mary graph. In each iteration, both algorithms choose a super-node
pair that introduces low error increase. The error increase of merg-
ing two super-nodes Vi and Vj to form one super-node Vm is:

∆i,j = e∗m,· − (e∗i,· + e∗j,· − e∗i,j) (3)

Here, e∗i,· =
∑
∀Vj∈VS

e∗i,j means the total error associated with
super-node Vi. In the above equation, e∗m,· denotes the total con-
nection error associated with the merged super-node Vm, and e∗i,·+
e∗j,· − e∗i,j is the total errors associated with Vi and Vj before the
merge. As e∗i,j is counted twice in e∗i,· + e∗j,·, we need to subtract
e∗i,j from e∗i,· + e∗j,·.

The two algorithms differ in the policy of choosing which pair
of nodes to merge in each iteration. The Greedy algorithm always
examines all node pairs within 2-hop aways and chooses the pair
with the minimum error (smallest ∆i,j), while the Random algo-
rithm first randomly picks a node and merges it with the best node
in its 2-hop neighborhood.

3. GIRAPH OVERVIEW
Giraph is an open source implementation of Pregel [8] proposed

by Google. It supports both iterative algorithms and vertex-to-
vertex communication in a distributed graph, thus is a natural fit
for us to implement distributed graph summarization algorithms.
Note that although this paper only demonstrates how distributed
graph summarization algorithms are implemented in Giraph, the
same algorithms can be easily implemented in other similar graph
processing systems, such as GraphLab [7] and Trinity [11], with
minor adaption.

A typical Giraph program consists of an input step, where the
graph is initialized (e.g., loading and distributing vertices to worker
machines), followed by a sequence of iterations, called supersteps,
separated by global synchronization barriers, and finally an output
step to write down the results.

Giraph employs a vertex-centric model. Each vertex is consid-
ered an independent computing unit that inherits from the prede-
fined Vertex class. Each vertex has a unique id, a set of outgo-
ing edges and application-dependent attributes of the vertex and its
edges which are necessary for the computation. A vertex instance
carries two states (active and inactive). In superstep i, each active
vertex can receive messages sent to it by other vertices in super-
step i− 1, query and update the information of itself and its edges,
initiate graph topology mutation, communicate with global aggre-
gation variables, and send messages to other vertices for the next
superstep i+1. All these computation logics are executed in a user-
overridable function named COMPUTE(). After all active vertices
finish their local COMPUTE() functions in a superstep, a global syn-
chronization phase allows global data to be aggregated from each
vertex’s submitted values, and messages created by each vertex to
be delivered to their destinations. At the beginning, all vertices are
active. A vertex can voluntarily deactivate itself by calling VOTE-
TOHALT() or be passively activated by some incoming messages
from other vertices. The overall program terminates when every
vertex votes to halt and there is no message to any vertex.

In Giraph, messaging is the major mechanism for communica-
tion. By calling SENDMESSAGE(dest,msg), a vertex can send a
message to the destination vertex dest with the message body msg.
Note that a vertex can send message(s) to any vertex (not only to its
neighbors). Aggregator is a mechanism for global communication
and synchronization. By calling AGGREGATE(aggr, val), the ver-
tex provides a value val for the global aggregator variable aggr.
After each superstep, Giraph aggregates the provided values from
all vertices for each aggregator variable. The aggregator variables
will be available to all vertices in the next superstep.

The Giraph computing framework consists of one master and
a number of workers. The master is responsible for coordinating
and controlling the computation process, and each worker works
on a subset of vertices and executes their computations. At start, a
customizable PREAPPLICATION() call is executed in the master to
initialize application-specific global data structure (e.g. global ag-
gregators). Then, each superstep starts with calling the overridable
PRESUPERSTEP() function and ends with calling another overrid-
able POSTSUPERSTEP() function in the master for updating global
data structures in each superstep. When the whole job finishes,
a customizable POSTAPPLICATION() function is executed in the
master for finalizing the global data structure.

4. DISTRIBUTED GRAPH SUMMARIZATION
For distributed graph summarization, we follow the same itera-

tive merging mechanism in the centralized algorithm in Section 2:
starting from the original graph as the summary (each node is a
super-node) and iteratively merging super-nodes until k super-nodes
left. However, there are two major challenges to achieve this itera-
tive merging mechanism in the Giraph distributed environment:

1. It is very easy to decide which pairs of super-nodes are good
candidates for merge and perform these merge operations in a cen-
tralized algorithm, since everything runs in a single process with
shared memory. But in the Giraph distributed environment, all
the decisions and operations have to be done in a distributed way
through message passing and synchronization.

2. The centralized algorithm only merges the optimal pair of
super-nodes in each iteration. And it requires N − k iterations to
produce a summary of size k, where N is the number of nodes in
the original graph. However, to fully utilize the parallelization in a
distributed environment, we need to find multiple pairs of nodes to
merge, and simultaneously merge them in each iteration.

The above two challenges define two crucial tasks that a dis-
tributed graph summarization algorithm needs to perform in each
iteration: Candidates-Find task and Merge task. The Candidates-
Find task decides on the pairs of super-nodes to be merged, whereas
the Merge task executes these merges.

In this paper, we propose three distributed graph summarization
algorithms: DistGreedy, DistRandom and DistLSH. The three al-
gorithms share the same operations in the Merge task, but differ in
how merge candidates are selected. DistGreedy and DistRandom
are modeled after the centralized Greedy and Random algorithms
introduced in Section 2, respectively. Both suffer from significant
drawbacks. To address their limitation, we propose a novel dis-
tributed graph summarization algorithm, called DistLSH.

……

Figure 2: Giraph vertex’s data structure
For all three algorithms, we can naturally map each super-node

in the summary graph as a Giraph vertex and the neighbors of the
super-node as the adjacent vertices for the Giraph vertex. The data
structure for the Giraph vertex is shown in Figure 2. Each Gi-
raph vertex has three attributes associated with vertices and two
attributes associated with edges:

• vertex.owner-id points to which other super-node this super-
node has been merged to; if owner-id equals to this super-
node’s id, then it indicates that this super-node is legitimate
(hasn’t been merged into any other super-node yet) in the
current summary.

• vertex.size records the number of nodes in the original graph
contained in this super-node.

• vertex.selfconn represents the number of edges in connecting
the nodes inside this super-node.

• edge.size caches the number of nodes in the other adjacent
super-node of the edge to avoid an additional round of query
for this value.

• edge.conn is the number of edges in the original graph be-
tween this super-node and the neighbor.

Since the introduced data structure is associated to edges, the space
complexity is still linear to the number of edges O(|E|). Based on
this data structure, we rewrite Eq. 2 as

e∗i,j = min{sizei × sizej − conni,j , conni,j}. (4)

Algorithm 1 shows an overview of the three distributed graph
summarization algorithms. Each iteration of the distributed algo-
rithms is processed in multiple supersteps. The first few supersteps
perform the Candidates-Find task (details will be provided in Sec-
tion 5), and the remaining supersteps perform the Merge task (de-
tails will be provided in Section 6). We use an aggregator, called
ExecutionPhase, as the global coordinator to indicate which phase
of an iteration the COMPUTE() function is currently executing in.
Based on the previous value of ExecutionPhase, we can set the
right value to this aggregator in the PRESUPERSTEP function be-
fore each superstep starts. Another aggregator, called ActiveNodes,
is used to keep track of the number of super-nodes in the current
summary. When the summary size is less or equal to the required
size k, the value of the ExecutionPhase will be set to DONE. In

Algorithm 1: Distributed Graph Summarization Overview
// Executed by each vertex in each superstep.

1 COMPUTE(MessageIterator msgs)
2 phase←GETAGGREGATORVALUE(“ExecutionPhase");
3 if phase=DONE then
4 VOTETOHALT();
5 else
6 if phase is part of Candidates-Find task then
7 FINDCANDIDATES(msgs) // see Section 5
8 else
9 MERGE(msgs) // see Section 6

// Executed before each superstep starts.
10 PRESUPERSTEP()
11 prevPhase←GETAGGREGATORVALUE(“ExecutionPhase");
12 active-nodes←GETAGGREGATORVALUE(“ActiveNodes");
13 if active-nodes ≤ k then
14 current-phase← DONE
15 else
16 current-phase←NEXTPHASE()

17 SETAGGREGATORVALUE(“ExecutionPhase",
current-phase);

this case, in the COMPUTE() function, every vertex will vote to
halt. Then the whole program will finish.

At the end of the program, the resulting graph will be written
down. Using this graph, we can derive the summary graph. For
each vertex, the owner-id will tell us whether it is a super-node in
the resulting summary, using the adjacent vertices with their size
and conn information, we can infer whether a super-edge should
exist or not (see Section 2). If the actual nodes in each super-node
are also desired, again the owner-id can help us derive the member-
ship information. Essentially, the id of each vertex and its owner-id
form an edge in a ownership forest. The leaf nodes are the nodes
from the original graph and the roots are the super-nodes in the
summary. A simple connected component algorithm on this graph
will compute all the memberships. The label propagation based
connected component algorithm [5] can be implemented straight
forwardly in Giraph. If the resulting summary has size less than
k (this could happen because multiple merges happen in each it-
eration), we randomly choose a number of roots in the forest and
reverse the merges to get the summary of size k. However, in most
practical cases, users are content enough with a summary of a size
roughly equal to k. Since these post processing steps are relatively
trivial, we omit the details in the interest of space.

5. FINDING MERGE CANDIDATES
We now explain in detail how to find pairs of super-nodes as

candidates to merge in DistGreedy, DistRandom and DistLSH.

5.1 DistGreedy
As DistGreedy is based on the centralized Greedy algorithm, it

looks at super-nodes that are 2-hops away to each other and thrives
to find the pairs with minimum error increase. To control the num-
ber of super-node pairs to be merged in each iteration, we use a
threshold called ErrorThreshold as the cutoff for which pairs qual-
ify as merge candidates. More precisely, every pairs with error
increase less than ErrorThreshold will become merge candidates.
Initially, ErrorThreshold is 0, which means we start with merging
pairs with no error increase at all. Whenever the number of merge
candidates fall below 5% of the current summary size, the algo-
rithm increases ErrorThreshold by a controllable parameter, called
ThresholdIncrease, for the subsequent iterations.

Common NeighborsUnique Neighbors Unique Neighbors

Super-node Super-node

Self Connection Self Connection

Scope of Scope of

Neighbors

Super-node

Self Connection

Figure 3: Node merge: from before-merge to after-merge.

The major task in the DistGreedy algorithm is to compute the
actual error increase for each pair of 2-hop-away super-nodes. This
is fairly simple in the centralized Greedy algorithm, but becomes
much more complex in the distributed environment, as the informa-
tion to compute the error increase is distributed in different places.
As shown in Figure 3, the error increase for merging a pair of super-
nodes Vi and Vj can be decomposed into 3 parts:
• Common Neighbor Error Increase (∆com

i,j): This part of error
increase is associated with the connections to the common
neighbors of the two super-nodes.
• Unique Neighbor Error Increase (∆uni

i,j): ∆uni
i,j captures the er-

ror increase brought by the connections to the unique neigh-
bors of the two super-nodes.
• Self Error Increase (∆self

i,j): This last part of error increase
comes from the self connections of the two super-nodes as
well as the connection between the two super-nodes if there
is any.

In Figure 3, we use scope to define all the information each Gi-
raph vertex knows: this super-node’s own size, selfconn, conn to
all its neighbors and the neighbors’ sizes. It is clear that the bits
and pieces used to compute the total error increase for merging two
super-nodes are distributed in the scopes of different Giraph vertex.
In the following, we will describe in detail how to compute the dif-
ferent parts of the error increase using Vi and Vj in Figure 3 as an
example.

Computing ∆com
i,j requires the error increase associated with the

connections of Vi and Vj to all their common neighbors. For a
common neighbor, say Vp, the error before the merge is e∗i,p + e∗j,p
(ref. Eq. 4). The error after the merge e∗m,p = min{(sizei +
sizej)× sizep − (conni,p + connj,p), conni,p + connj,p}.

Thus, the error increase of merging Vi and Vj w.r.t. common
neighbor Vp is ∆p

i,j = e∗m,p − e∗i,p − e∗j,p. Luckily, all the infor-
mation needed to compute ∆p

i,j can be found in the scope of the
common neighbor Vp. As a result, the total ∆com

i,j can be collec-
tively computed by all the common neighbors, ∆com

i,j =
∑
Vp ∆p

i,j .

For ∆uni
i,j , the computation requires only unique neighbors of

each super-node. As a result, Vi and Vj can independently compute
this part of error increase. As an example, for the unique neighbor
Vq in Figure 3, ∆q

i,j = e∗m,q − e∗i,q. The error increase associated
with Vi’s unique neighbors thus is ∆uni-i

i,j =
∑
Vq ∆q

i,j . And Vj can

similarly compute ∆uni-j
i,j . The total ∆uni

i,j is a simple sum of the two:
∆uni

i,j = ∆uni-i
i,j + ∆uni-j

i,j . However, a tricky issue is that each super-
node has to know who are the unique neighbors for each candidate

Algorithm 2: FINDCANDIDATES() for DistGreedy
1 FINDCANDIDATES(MessageIterator msgs)

// Show execution flow of merge candidate Vi and
Vj.

2 phase← GETAGGREGATORVALUE(“ExecutionPhase");
3 switch phase do
4 case Common-Neighbor-Error-Increase Phase

// Executed in vertex Vp.
5 for ∀Vi,Vj ∈ Np do
6 Compute ∆p

i,j ;
// Register common neighbor and send

∆p
i,j to merge host.

7 SENDMESSAGE(Vi, 〈Vj ,Vp,∆p
i,j〉);

8 SENDMESSAGE(Vj , 〈Vi,Vp〉);

9 case Unique-Neighbor-Error-Increase Phase
// Executed in vertex Vj.

10 for 〈Vj ,Vp,∆p
i,j〉 ∈ messages do

11 ∆com
ij ← ∆com

i,j + ∆p
ij ;

12 Common Neighbors CNi,j ← CNi,j ∪ {Vp}
13 for Vq ∈ Ni ∧ Vq 6∈ CNij do
14 Compute ∆q

i,j ;

15 ∆uni-j
i,j ← ∆uni-j

i,j + ∆q
i,j

16 if i < j then
// Send ∆uni-j

i,j as well as own vertex info
to the other merge candidate.

17 SENDMESSAGE(Vi, 〈Vj , sizej , connj ,∆
uni-j
i,j 〉);

18 else
19 Store ∆uni-j

i,j ;

20 case Self-Error-Increase Phase // Executed
in vertex Vi.

21 for 〈Vj , sizej , connj ,∆
uni-j
i,j 〉 ∈messages do

22 Compute ∆self
i,j ;

23 ∆i,j ← ∆self
i,j + ∆com

i,j + ∆uni-i
i,j + ∆uni-j

i,j ;
24 if ∆i,j ≤ ErrorThreshold then

// Notify the other merge candidate
Vj to merge to me.

25 SENDMESSAGE(Vj , 〈Vj → Vi〉);

merge partner . This requires the common neighbors to register
with the two super-nodes before hand.

Computing ∆self
i,j requires collaboration between Vi and Vj . Be-

tween the two super-nodes, the one with a larger id, say Vj , sends
its selfconn to Vi. Then at Vi, ∆self

i,j can be computed as ∆self
i,j =

e∗m,m−e∗i,i−e∗j,j−e∗i,j , where a self-loop error e∗x,x (x = {m, i, j})
is min{ sizex(sizex−1)

2
− selfconnx, selfconnx}, and sizem =

sizei + sizej .
Lastly, all the three parts of error increase will be aggregated at

the super-node with the smaller id, Vi in our example. This requires
messages from common neighbors for ∆com

i,j and messages from Vj
for ∆uni-j

i,j and for Vj .selfconn. Then Vi can simply test whether
the total error increase is below ErrorThreshold or not to decide on
whether the two super-nodes should be merged.

Algorithm 2 shows the pseudo code for DistGreedy’s FindCandi-
dates function. There are three phases for this function. These three
phases correspond to the computation of the three different parts of
error increase. In different phases, the Giraph vertex plays different
roles in the computation. Again, here aggregator ExecutionPhase
is to indicate which phase the current superstep is in. In the first
phase, the Giraph vertex plays the role of a common neighbor, Vp,

to a potential merge candidate Vi and Vj . Since the neighbors of
Vp are all two hops away from each other, all neighbor pairs are po-
tential candidates to merge. As a result, Vp will compute ∆p

i,j for
all pairs of neighbors Vi and Vj where i 6= j, and send ∆p

i,j to the
super-node in the pair with the smaller id, Vi. It also sends a mes-
sage to Vi and Vj to register itself as a common neighbor. In the
second phase, the current Giraph vertex plays the role as one super-
node in a potential merge candidate (Vi,Vj). If it is the super-node
with the smaller id, Vi, then it will receive a message ∆p

i,j from
each common neighbor Vp of Vi and Vj . It will aggregate these
values to compute ∆com

i,j . At the same time, it also registers Vp
as a common neighbor of Vi and Vj . Since now it knows all the
common neighbors, it can infer who are the unique neighbors and
compute ∆uni-i

i,j . On the other hand, if the current Giraph vertex is
the super-node with the larger id, Vj , then it will receive a message
from each common neighbor Vp of Vi and Vj , indicating that Vp is
a common neighbor of Vi and Vj . As a result, the unique neighbors
are known, and ∆uni-j

i,j can be computed and sent to Vi. In addition,
it also send its selfconnj to Vi. In the third phase, the current Gi-
raph vertex plays the role of the super-node with the smaller id,
Vi, in a potential merge candidate (Vi,Vj). Now, Vi has already
computed ∆com

i,j and ∆uni-i
i,j in the second phase, it will also receive

∆uni-j
i,j and selfconnj . Using selfconnj and its own information, Vi

can compute ∆self
i,j . At the end, the total error increase ∆i,j can be

computed and a decision on whether to merge Vi and Vj will be
made based on ErrorThreshold.

To analyze the time complexity of this algorithm, we use d to
denote the average number of neighbors of a vertex. Therefore,
the average number of 2-hop away neighbors for a vertex is d2.
In DistGreedy, the computation of all the different ∆com

i,j for each
vertex Vi is essentially a loop over all its 2-hop away neighbors. So,
its time complexity is O(d2 · N), where N is the total number of
vertices. Same complexity analysis applies to the ∆self

i,j computation
phase. The ∆uni

i,j computation phase iterates through each 1-hop
neighbor Vq to compute ∆q

i,j for every 2-hop neighbor Vj , and
thus has a time complexity of O(d3 ·N). Overall, DistGreedy has
a time complexity of O(d3 ·N) for each Candidates-Find step.

5.2 DistRandom
The DistGreedy algorithm described in the previous section blindly

examines all super-node pairs of 2 hops away to each other to see
whether they should be merged. This process incurs a large amount
of computation and network messages. In order to reduce the num-
ber of super-node pairs to be examined, DistRandom randomly se-
lects some super-node pairs to examine. In the selection process,
we want every super-node to have a chance to be merged with an-
other super-node. Similar to DistGreedy, DistRandom also has the
following three supersteps.

1. Every super-node randomly selects one neighbor and sends
a message to this neighbor, including its size, selfconn, all
neighbors’ size and conn.

2. The neighbor receives the message and forwards it to a ran-
dom chosen neighbor with an id smaller than the sender.

3. The 2-hop away neighbor receives this message and use it
to compute the error increase. If the error increase is above
ErrorThreshold, then a merge decision is made.

On average each super-node will receive a message from one
of its 2-hop neighbors. Calculating the error increase takes O(d)
time. So, DistRandom has a time complexity of O(d · N) for one
Candidates-Find step.

5.3 DistLSH
For a large network with millions of nodes, evaluating all possi-

ble super-node pairs in 2-hop distance can be prohibitively expen-
sive. As many such super-node pairs do not qualify the merge cri-
teria, a lot of work is wasted. Although DistRandom can reduce the
number of super-node pairs examined, by random sampling it also
misses some really good merge candidates. In this section, we in-
troduce another distributed graph summarization algorithm, called
DistLSH. DistLSH leverages a technique called Locality Sensitive
Hashing (LSH) [4] to quickly find out pairs of super-nodes which
are likely to be good merges. However, as we will show later in
this section, LSH cannot directly applied to our problem. Instead,
we invent a novel approach, called Striped-MinHash.

LSH Background: We first provide some brief background in-
formation on LSH. LSH is a method to probabilistically reduce di-
mensions of high-dimension data. Using LSH, similar data items
in the high-dimension space are hashed into the same buckets with
high probabilities. In this study, we adopt one type of LSH, called
MinHash [2]. MinHash is used to quickly estimate the similarity
between two sets. For a set A and a hash function h(·) that maps
each element ai in A to an integer number, the MinHash of A is
defined as the element ai of A with the minimum hash value of
h(·). More precisely, hmin(A) = ai s.t. ∀aj ∈ A, h(ai) ≤ h(aj).
A very nice property of MinHash is that the probability of hash col-
lision of two sets A and B is exactly the Jaccard similarity [2] of
the two sets: Pr(hmin(A) = hmin(B)) = |A ∩B|/|A ∪B|.

Before understanding the intuition behind our Striped-LSH ap-
proach, we first introduce a concept, called connection weight. For-
mally, the connection weight between two super-nodes Vi and Vj
is defined as wi,j = |Ai,j |/|Πi,j |. With wi,j , we can rewrite the
definition of e∗i,j (ref. Eq. 2) as

e∗i,j =

{
|Ai,j | if wi,j < 0.5
|Πi,j | − |Ai,j | otherwise (5)

The DistLSH algorithm only examines super-node pairs that are
highly likely to be good merges that bring in minimal error in-
creases. We observe that a good merge should satisfy the following
two criteria: 1) the two super-nodes share a lot of common neigh-
bors, 2) they have similar weights to each neighbor. The first cri-
terion is easy to understand, in the following we explain why the
second is important. Let the neighbor sets of Vi and Vj be Ni and
Nj , respectively. For every neighbor Vp ∈ Ni ∪ Nj , we look at
wi,p and wj,p. In the case when Vp is only a unique neighbor to one
of the super-nodes, say Vi, then wj,p = 0. When the weights of the
two connections are very similar, wi,p ≈ wj,p, then after merging
Vi and Vj into Vm, wm,p =

|Ai,p|+|Aj,p|
|Πi,p|+|Πj,p|

≈ wi,p. When wi,p

and wj,p are both less than 0.5, e∗i,p = |Ai,p|, e∗j,p = |Aj,p| and
e∗m,p = |Ai,p| + |Aj,p|. As a result, the error increase w.r.t neigh-
bor Vp is 0, because ∆p

i,j = e∗m,p − e∗i,p − e∗j,p = 0. Similarly,
when wi,p and wj,p are both greater than 0.5, the error increase
is also 0. On the other hand, if wi,p and wj,p are very different,
e.g. wi,p � 0.5 and wj,p � 0.5, then wm,p will be somewhere
between wi,p and wj,p. If wm,p < 0.5, ∆p

i,j = 2|Aj,p| − |Πj,p|,
otherwise, ∆p

i,j = |Πi,p|−2|Ai,p|. In both cases, ∆p
i,j > 0. There-

fore, if for every neighbor in Ni ∪ Nj , the connection weights of
Vi and Vj are similar, the total error increase for merging the two
super-nodes will be minimal, making them a perfect merge candi-
date.

We have found out what good merges look like, the next question
is how to efficiently pinpoint such good merges. If we apply the
MinHash approach to the neighbor set of each super-node, we can
quickly find out the super-node pairs with similar neighbor sets.

But this is not enough, as the important connection weights are not
considered at all in MinHash. In order to address this limitation of
MinHash, we propose a Striped-MinHash approach.

0

1

a1 a2 a3 a4 a5

!

{a4}

{a1, a4}

{a1, a2, a4}

{a1, a2, a3, a4, a5}

R = 5

0.8

0.6

0.4

0.2

0.53

0.30

0.12

0.77

0.18

Figure 4: Striped-MinHash Example.

As shown in Figure 4, Striped-MinHash takes a weighted set
A = {a1 : w1, ..., ai : wi, ...} as input, divides the weight range
[0, 1] into R stripes, and applies a different MinHash function to
each stripe. In stripe r, the r-th MinHash function hr

min is applied
to a derived set Ar = {ai|wi >

r−1
R
}. Given two weighted sets A

and B, if at strip r, they are hashed to the same bucket, then we say
that A and B are a hash hit at strip r, denoted as hitr(A,B) = 1.
Otherwise, hitr(A,B) = 0. The total number of hits for A and
B is defined as hit(A,B) =

∑R
r=1 hit

r(A,B). It is clearly to
see that the more similar these two weighted sets are, the more hits
they are likely to get using Striped-MinHash.

We directly apply the Striped-MinHash approach in our distributed
Dist-LSH algorithm to find out super-node pairs that have similar
weighted neighbor sets (each neighbor is associated with the con-
nection weight), a.k.a good merge candidates. We use a parame-
ter HitsTheshold to control the merge candidates: only super-node
pairs with number of hits more than HitsTheshold will be merged.
Initially HitsTheshold= R, whenever the number of merge candi-
dates falls below 5% of the current summary size (so that more than
95% of the current graph can not be compressed), the algorithm de-
creases HitsTheshold by 1 for the subsequent iterations.

r

Figure 5: Not only is Vh the result of MinHash, but also it is the
local coordinator of hash collisions in Giraph.

Applying Striped-MinHash and deciding on the merge candi-
dates is carried out in a fully distributed fashion in three supersteps
as shown in Algorithm 3. Again, we use the aggregator Execution-
Phase to indicate what operations each superstep should perform.

In the first phase (Hash Phase), each Giraph vertex performs
Striped-MinHash on its super-node Vi’s weighted neighbor set. For
each strip r, the result of the MinHash hr

min is a super-node Vh from
the neighbor set. Note that MinHash is used here in a very smart
way. As shown in Figure 5, MinHash doesn’t only tell us the hash
value, but also points us to a valid super-node in the current sum-
mary graph where the collection of hash collisions can be executed.
Vi will then send a message to notify Vh that the r-th MinHash is
hashed to Vh.

In the second phase (Collision Phase), a Giraph vertex Vh will
receive a number of messages indicating who is hashed to Vh in
which strip. For each strip r, Vh collects all the super-nodes hashed
to itself. Note that every pair of super-nodes in this collection is

Algorithm 3: FINDCANDIDATES() for Dist-LSH
1 FINDCANDIDATES(MessageIterator msgs)
2 phase← GETAGGREGATORVALUE(“ExecutionPhase");
3 switch phase do
4 case Hash Phase // Executed in vertex Vi.
5 for r ← 1, 2, · · · , R do
6 Construct hash function hr(·);
7 Candidate neighbor set

Cu ← {Vh|Vh ∈ Ni ∧ wp,i > (r − 1)/R};
8 Vh ← arg min(hr(Vj));

// Notify Vh that it is the rth striped
minhash result of Vi.

9 SENDMESSAGE(Vh, 〈r,Vi〉);

10 case Collision Phase // Executed in vertex Vh.
11 for 〈r,Vi〉 ∈ msgs do // Hash result message

with hash function id and source node.
// Put the node Vi into rth

collision bucket.
12 The rth collision bucket Br ← Br ∪ {Vi};
13 for r ← 1, 2, · · · , R do
14 for ∀Vi ∈ Br ∧ Vj ∈ Br ∧ x < y do

// Collect the partial hit
count among Vi and Vj

15 Partial Hit count Ci,j ← Ci,j + 1

16 for ∀〈Vi,Vj〉 s.t. Ci,j > 0 do
// Notify Vi that it hits Ci,j times

with Vj

17 SENDMESSAGE(Vi, 〈Vj , Ci,j〉);

18 case Aggregate Phase // Executed in vertex Vi.
19 for 〈Vj , Ci, j〉 ∈ msgs do // Collision

Message contain the node that I
collided in Collision phase.

20 Collision counter Cj ← Cj + Ci,j ;

21 for Vj s.t. Cj > MergeThreshold do
// Notify the other merge candidate Vj

to merge to me.
22 SENDMESSAGE(Vj , 〈Vj → Vi〉);

actually a hash collision. Suppose, in both strip r and r′, Vi and
Vj are hashed to Vh. Then, Vh can perform a local aggregation to
count the partial number of hits between Vi and Vj . After that, Vh
sends this partial count to the super-node with a smaller id among
the pair, Vi.

In the third phase (Aggregation Phase), super-node Vi receives
partial counts of hits for itself with other super-nodes, and compute
the total numbers of hits. Then for each potential partner, it tests
whether the number of hits is above the HitsThreshold.

We now analyze the complexity of the Candidates-Find step of
DistLSH. In Hash Phase, there are R striped hashes and each re-
quires iterating through the neighbor set, resulting in O(R ·d) time.
In Collision Phase, since each super-node sends R messages in pre-
vious phase, each super-node also receives R messages on average
and puts them into R buckets. In the following, we estimate that
the expected number of collision pairs is (R− 1)N/2.

THEOREM 5.1. The expected pairs of merge candidates in each
FindCandidates step of DistLSH is (R− 1)N/2.

PROOF. We assume that super-nodes fall into R buckets with
uniform distribution. Therefore, the number of nodes in one bucket
(denoted as t) follows the binomial distribution Pr(t) ∼ B(n =
R, p = 1/R). A bucket having t nodes will generate t · (t− 1)/2
pairs of merge candidates, the expected number of total pairs for
each bucket is

∑R
t=0 Pr(t) · t · (t−1)/2 = E(t(t−1)/2). As each

E(t(t− 1)/2) = 1/2(E((t− 1)2) + E(t)− 1) = 1/2(V ar(t) +
E(t)− 1) < (1− 1/R)/2 = (R− 1)/2R and we have R buckets
in total, so there are (R− 1)/2 total pairs of merge candidate. For
all vertices, there are (R− 1)N/2 pairs of merge candidates.

Based on Theorem 5.1, the time complexity of Collision Phase
is O(R/2 · N). Finally, in the Aggregate Phase each node will
receive R/2 hit messages on average. The overall time complexity
of DistLSH is O((dR + R) ·N) in each Candidates-Find step.

6. MERGING SUPER-NODES
After the Candidates-Find task, we obtain a set of super-node

pairs to be merged. In this section, we provide details on how to
merge these super-nodes distributedly. For every vertex merge, in-
stead of creating a new merged super-node, we always reuse the
super-node with the smaller id as the merged super-node. Specif-
ically, the super-node with larger id shall set its owner-id to the
merged super-node, and call VOTETOHALT() to turn itself to inac-
tive.

As discussed in the previous section, we know that the decision
on whether to merge super-nodes Vi and Vj is always made at the
super-node with the smaller id, Vi. Therefore, at the beginning of
the Merge task, Vi already knows which other super-node(s) will
be merged into it. However, the tricky issue is that there could be
another merge decision that requires Vi merged into Vg . In this
case, Vj should be eventually merged into Vg .To efficiently merge
multiple super-node pairs distributedly, we introduce a repeatable
merge decision propagation phase to ensure all the super-nodes
know whom they eventually should be merge into. This design
decision is essential to save overall supersteps and messages, since
vertex id is much cheaper to propagate than real vertex data.

In Decision Propagation Phase, we add a Logical And aggrega-
tor called PropagationDone to detect whether there are un-propagated
merge decisions. Before each superstep, this aggregator is initial-
ized to TRUE. During the execution of the superstep, if any vertex
thinks propagation should be continued, it will aggregate FALSE
to PropagationDone, which will result in FALSE at the end of the
superstep. If PropagationDone is FALSE, the next superstep will
continue the merge decision propagation until all the super-nodes
know their eventual merge destination.

Taking the above merge case as an example. In the first super-
step, the super-node with the smaller id in a merge candidate will
send the merge decision to the other super-node. In our case, Vi
will notify Vj and Vg will notify Vi. In the second superstep, Vj
receives a message from Vi and changes its owner-id to Vi. Sim-
ilarly, super-node Vi receives a message from Vg and changes its
owner-id to Vg . However, Vi remembers that it has sent a merge
decision to Vj , so it needs to propagate the new owner Vg to Vj .
Because of this, Vi aggregates FALSE to PropagationDone and
the propagation continues in the next superstep. In the third super-
step, Vj finally receives the new merge destination Vg and updates
its owner-id to Vg . At the end of this superstep, every super-node
agrees on the fact that all the merge decisions are propagated and
we are ready to actually merge the super-nodes.

Recall that in the vertex data structure, each super-node keeps
its neighbor’s basic information (nbr.size, nbr.conn). In Connec-
tion Switch Phase, each super-nodes to be merged shall notify its
neighbors to update this neighbor information. For example, Vi
sends out a connection switch message to every neighbor to no-
tify them to alter connection destination from Vi to Vg . This step
ensures that when Vi turns itself to inactive, its neighbor’s connec-
tions are not corrupted.

Algorithm 4: MERGE()
1 NEXTPHASE()
2 phase← GETAGGREGATORVALUE(“MergePhases");
3 if phase = Decision Propagation Phase then
4 if GETAGGREGATORVALUE(“PropagationDone") then
5 currentPhase← nextPhase;
6 else
7 currentPhase←

Decision Propagation Phase;

// Show execution flow of merge candidate Vi and Vj.
8 MERGE(MessageIterator msgs)
9 phase← GETAGGREGATORVALUE(“MergePhases");

10 switch phase do
11 case Decision Propagation Phase // Executed

in super-node Vi.
12 propogation-done← TRUE;
13 for 〈Vj → Vg〉 ∈ msgs do // Merge Decision

Message
// Message: from_id → to_id.

14 if g < owner-id then
15 owner-id← g;
16 propogation-done← FALSE;

17 AGGREGATE(“PropagationDone”,
propogation-done);

18 if NOT propogation-done then
19 for ∀Vj ∈ PSi do // PSi contains all

nodes that will merge to me, see
Algorithm 2 & 3.

20 SENDMESSAGE(Vj , 〈Vj → Vi〉);

21 case Connection Switch Phase
22 if owner-id 6= self-id then

// Asking neighbor to update its
edge list.

23 SENDMESSAGETOALLNEIGHBORS(〈self-id→
owner-id〉);

24 case Connection Merge Phase
25 for 〈Vp → Vq〉 ∈ msgs do // Edge update

messages
26 Change edge id from Vp to Vq ;

// Send all my info to owner node and
stop.

27 if owner-id 6= self-id then
28 Pack node values and all edges to info-msg;
29 SENDMESSAGE(ower-id,info-msg);
30 VOTETOHALT();

31 case State Update Phase
32 for info-msg ∈ msgs do
33 Merge node values and edges to myself.

34 if self-size is modified then
// Notify all my neighbors to

update my new size.
35 SENDMESSAGETOALLNEIGHBORS
36 (〈self-id, self-size〉);

In Connection Merge Phase, receivers of the connection switch
messages shall update their neighbor list with the new neighbor
ids. In addition, each super-node that needs to be merged will also
send its self-data to merge owner, including self.size, self.conn, all
neighbor’s nbr.sizes and nbr.conns.

Finally, in the State Update Phase, each merge owner receives
the information from all the super-nodes that needs to be merged
into it, and performs the actual merge by updating all the attributes

Dataset Name # Nodes # Edges
Enron Email Network 36, 692 367, 662

Gowalla Social Network 565, 642 2, 431, 625
Skitter Internet Trace Graph 1, 696, 415 11, 095, 298

Table 1: Dataset Description
in the local data structure. At the end of this phase, it also sends out
a message to every neighbor with its new nbr.size information.

Optimization for Hub Nodes. We found out that many real
graph data sets exist a small number hub nodes. These hub nodes
often connect to a large number of low degree nodes. In many
cases, these nodes only connect to the hub nodes and have degree
of one. These hub nodes create computation imbalance problems
for both DistGreedy and DistLSH algorithms. In DistGreedy, a hub
node results in a huge number of neighbor pairs to be examined for
merge candidacy; whereas in DistLSH, the large number of one-
degree neighbors of a hub node will create a large amount of hash
collisions gathered at the hub node. To solve the problem, it is
fairly easy to see that all the 1-degree nodes of the hub node can be
safely merged into one super-node without introducing any error
increase. In fact, for all of our distributed algorithms, we first in-
troduce 3 additional supersteps to merge all the 1-degree neighbors
of hub nodes, then execute the corresponding algorithms. This op-
timization for hub nodes significantly reduces the computation and
network overhead. In all of our experiments in Section 7, the algo-
rithms tested include this special optimization.

7. EXPERIMENTAL EVALUATION
We now conduct experiments with various distributed graph sum-

marization implementations on a cluster of 16-node IBM SystemX
iDataPlex dx340. Each server consisted of two quad-core Intel
Xeon E5540 64-bit 2.8GHz processors, 32GB RAM, and intercon-
nected using 1GB Ethernet. Each server ran Ubuntu Linux (kernel
version 2.6.32-24), Java 1.6, and Giraph trunk version downloaded
in June 2012. Each server was configured to run up to 6 workers
concurrently. The following configuration parameters were set in
order to boost performance: Giraph check-pointing is turned off, -
Dgiraph.useNetty=true is turned on in Giraph to use Netty for mes-
sage passing, and a maximum of 3GB JVM heap space was used
per worker. All experiments were repeated 3 or more times. We
report the average of those measurements.

We designed the experiments with the following objectives: First,
we want to find out whether our distributed algorithms strike a good
balance between effectiveness and efficiency. Second, we want to
study the effect of various parameter settings in our algorithms.
Third, we want to evaluate the scalability of our algorithms, with in-
creasing graph sizes, decreasing summary sizes, and different num-
ber of workers.

We used both real datasets and synthetic datasets in our experi-
ments. The three real datasets used are: the Enron email network,
the As-Skitter Internet trace graph (both from snap.stanford.
edu/data), and the Gowalla location based social network [6].
Table 1 summarizes their basic statistics. We also use the R-MAT
model [3] in the GTgraph suites [1] to generate synthetic graphs
with power-law degree distributions and small-world characteris-
tics. We set the average node degree in each synthetic graph to 5,
and used the default values for the other parameters in the genera-
tor. With synthetic graphs, we can freely examine the scalability of
our distributed techniques across controlled graph sizes.

In all our experiments, we measured the quality of a summary
graph using the errors introduced by summarization (see Section 2),
and the efficiency of a graph summarization method using execu-
tion time. The execution time includes the time for special handling

27k 20k 10k 5k 2k
10

0

10
1

10
2

10
3

10
4

10
5

Number of Supernodes in Graph Summary

G
ra

p
h
 S

u
m

m
a
ry

 E
rr

o
r

DistLSH
DistRandom

DistGreedy
Greedy

(a) Enron Dataset

400k 200k 100k 50k 10k
10

3

10
4

10
5

10
6

Number of Supernodes in Graph Summary

G
ra

p
h
 S

u
m

m
a
ry

 E
rr

o
r

DistLSH

DistRandom

DistGreedy

(b) Gowalla Dataset

1.3M 1M 500k 100k 50k
10

2

10
3

10
4

10
5

10
6

10
7

Number of Supernodes in Graph Summary

G
ra

p
h
 S

u
m

m
a
ry

 E
rr

o
r

DistLSH

DistRandom

DistGreedy

(c) As-skitter Dataset

Figure 6: Log-scaled graph summary error histograms across different graph summary sizes for three real datasets.

of hub nodes, but excludes the time for the post processing step de-
scribed in Section 4.

7.1 Balance between Effectiveness and Efficiency
We first compare the summary qualities produced by the three

distributed algorithms as well as their performance. As there is no
prior art on distributed graph summarization, we use the summary
qualities of the centralized Greedy algorithm as a standard to evalu-
ate the effectiveness of the distributed algorithms. However, as the
centralize algorithm cannot handle large scaled graphs, we are only
able to apply it to the smallest Enron dataset.

Figure 6 and 7 collectively demonstrate the graph summary qual-
ities and running time of the three distributed algorithm on the three
real datasets, with different summary sizes. For DistLSH, the num-
ber of stripes (R) in Striped-MinHash is set to be 50.

First of all, as shown in Figure 6(a), DistGreedy consistently pro-
duces summaries with very comparable qualities (less than 9% dif-
ference) to the centralized greedy algorithm. As a result, for large
datasets, we can use DistGreedy as the standard for quality com-
parison. In addition, DistLSH only introduces less than 20% more
errors than Greedy (ref. Figure 6(a)). Compared to the centralized
Greedy algorithm, the additional errors incurred by DistGreedy are
due to multiple merges in each iteration, and the extra errors in
DistLSH are caused by both the multiple merges as well as the
candidates finding heuristic.

As Figure 6 shows, with the largest summary sizes (70% ∼ 80%
of original graph size), all graphs can be summarized with small
number of errors as it is easy to find many vertices with similar
adjacent neighbors at the beginning. As summaries become more
compact, qualities of summaries degrade. One may wonder why
DistLSH performs slightly worse than other algorithms on the En-
ron dataset when the summary size is 27K, around 73% of the orig-
inal graph. This is because the graph is quite small. The error gen-
erated by the centralized Greedy algorithm at this stage is only 10.
Therefore, in this extreme case, several sub-optimal node merges
in DistLSH algorithm may deteriorate summary quality. But when
further summarizing the graph into more compact summaries, the
DistLSH’s accidental sub-optimal merges won’t affect the overall
summary quality much.

Figure 6 indicates that DistLSH consistently produces only slightly
larger (no more than 30%) summary errors than DistGreedy, and
Figure 7 shows that DistLSH is 2 ∼ 11 times faster than Dist-
Greedy under all settings. DistLSH strikes a good balance be-
tween effectiveness and efficiency in graph summarization: 1) it
consistently produces summaries with comparable qualities to Dist-
Greedy or even centralized Greedy; 2) DistLSH is much faster than
the other distributed algorithms.

Among the distributed algorithms, DistRandom is neither effec-
tive nor efficient in most experimental settings. DistRandom only
appears to be more efficient than the other two in the case of large

summary sizes (70% ∼ 80% of original graph size). This is be-
cause at the beginning of summarization, there exist a large number
of good potential merges. Even with random selection, the chance
of getting a good merge is still high. However, as the summary be-
comes more and more compact, DistRandom results in a lot of bad
choices not satisfying the merge criteria. As a result, DistRandom
usually requires a lot more iterations to produce a summary with
desired size.

7.2 Number of Stripes on DistLSH
In DistLSH, the number of stripes R in Striped-MinHash is a pa-

rameter directly affecting the effectiveness and efficiency. When R
is 1, DistLSH degrades to an algorithm that finds the merge candi-
dates simply based on MinHash, at the price of losing all connec-
tion weight information. However, although a larger R can capture
the weight information better, it requires more computation. Fig-
ure 8 illustrates how a larger R reduces the graph summarization
errors. It seems that 50 is a good knee point that can reduce the
error significantly without much sacrifice in performance. In the
interest of space, we do not display the execution time of DistLSH
with different R, as the running time follows a pattern of linear
increase with R.

7.3 Scalability of Our Distributed Techniques
We test the scalability of our distributed algorithms on a num-

ber of synthetic graphs. Figure 9 shows the execution time of dis-
tributed algorithms with increasing graph sizes from 1 million to
100 million nodes, using a fixed number of 80 workers. The tar-
get graph summary size is set as 0.1% of the original graph. Here
the increase from around 600 seconds to roughly 6,000 seconds in
DistLSH demonstrates its sub-linear runtime increase with graph
sizes. Unfortunately, the largest graph sizes that DistGreedy and
DistRandom can process in a reasonable amount of time (less than
2 hours) are 4 millions and 1 millions, respectively. With these rel-
atively small graph datasets, we can still see that DistLSH is much
faster than DistGreedy and DistRandom.

To show how our distributed algorithms scale with the number of
workers, Figure 10 presents the runtime for a synthetic graph with
1 million vertices, when the number of Giraph workers varies from
20 to 80. Here the drop from 2, 174 seconds to 636 seconds using
4 times as many as workers represents a speedup of about 3.4. Due
to the synchronization cost between supersteps, the ideal speedup 4
is impossible to achieve. 3.4 is already a very decent speedup ratio.

8. RELATED WORK
Graph summarization is a relatively new concept in graph analy-

sis. It was proposed independently by [12] and [9] in 2008. Despite
the differences in these two works, both employ a same fundamen-
tal summary model, in which a summary itself is a graph, more
compact yet informative. The nodes in the summary graph repre-

27k 20k 10k 5k 2k

10
1

10
2

10
3

Number of Supernodes in Graph Summary

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
e
c
.)

DistLSH

DistRandom

DistGreedy

(a) Enron Dataset

400k 200k 100k 50k 10k
10

1

10
2

10
3

10
4

Number of Supernodes in Graph Summary

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
e
c
.)

DistLSH

DistRandom

DistGreedy

(b) Gowalla Dataset

1.3M 1M 500k 100k 50k
10

0

10
1

10
2

10
3

10
4

10
5

Number of Supernodes in Graph Summary

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
e
c
.)

DistLSH

DistRandom

DistGreedy

(c) As-skitter Dataset

Figure 7: Log-scaled running time histograms across different graph summary sizes for three real datasets.

25 50 100 150 200
5

6

7

8

9

10
x 10

4

Number of Stripes for Striped−MinHash in DistLSH (R)

G
ra

p
h
 S

u
m

m
a
ry

 E
rr

o
r

DistLSH
DistRandom

DistGreedy
Greedy

(a) Enron Dataset

25 50 100 150 200
5

5.5

6

6.5

7

7.5

8

8.5

9
x 10

5

Number of Stripes for Striped−MinHash in DistLSH (R)

G
ra

p
h

 S
u

m
m

a
ry

 E
rr

o
r

DistLSH

DistRandom

DistGreedy

(b) Gowalla Dataset

25 50 100 150 200
5

6

7

8

9

10
x 10

6

Number of Stripes for Striped−MinHash in DistLSH (R)

G
ra

p
h
 S

u
m

m
a
ry

 E
rr

o
r

DistLSH

DistRandom

DistGreedy

(c) As-skitter Dataset

Figure 8: The effect of minhash layer number on DistLSH. The number of super-nodes for Enron, As-skitter and Gowalla are 2K,
10K and 50K respectively.

1M 4M 10M 40M 100M
0

1000

2000

3000

4000

5000

6000

7000

Number of Nodes in Input Graph (N)

P
ro

c
e

s
s
in

g
 T

im
e

 @
8

0
 w

o
rk

e
rs

 (
s
e

c
.)

DistLSH

DistRandom

DistGreedy

20 40 60 80
0

1000

2000

3000

4000

5000

Number of Workers

P
ro

c
e

s
s
in

g
 T

im
e

 @
N

=
1

M
 (

s
e

c
.)

DistLSH

DistRandom

DistGreedy

Figure 9: Scale with input size. Figure 10: Scale with cluster size.

sent groups of nodes from the original graph, and edges in the sum-
mary describe the relationships between groups of nodes. In [9],
besides the summary graph, a set of edge corrections is also main-
tained, so that the original graph can be reconstructed from sum-
mary graph by applying the edge corrections. Based on Rissanen’s
Minimum Description Length (MDL) principle [10], the authors
in [9] formulated the graph compression problem into an optimiza-
tion problem, which minimizes the sum of the size of the summary
graph and the size of the edge correction set. The graph summa-
rization model in [12] incorporates attributes associated with nodes
and different types of edges besides the normal graph structure. As
a result, the graph summarization method in [12] is able to let users
select node attributes and edge types of interests and produce sum-
maries with desired resolutions. A subsequent work [13] addressed
two limitations of [12], namely the issues of a large number of at-
tributes being selected and attributes with large value ranges. How-
ever, none of the existing works addresses the issue of large scale
graph summarization in a distributed environment.

9. CONCLUSION
This paper introduces three distributed algorithms for large-scale

graph summarization on the Giraph distributed computing frame-
work. Among them, the DistLSH algorithm applies the novel Striped-
MinHash technique to linearly pinpoint the set of possible merge
candidates, and achieves a nice balance between effectiveness and
efficiency. Scalability testing on large synthetic graphs indicates

that DistLSH scales nicely with graph sizes and cluster sizes. As
DistLSH has been shown a practical algorithm for large-scale graph
summarization on real email/Internet/social networks data, in the
future work, we plan to mine the graph patterns from the sum-
maries produced by DistLSH, and study the correlation between
graph patterns and summary sizes.

10. REFERENCES
[1] D. A. Bader and K. Madduri. Gtgraph: A suite of synthetic graph

generators. www.cse.psu.edu/ madduri/software/GTgraph.
[2] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher.

Min-wise independent permutations (extended abstract). In STOC
’98, pages 327–336.

[3] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A recursive model
for graph mining. In SDM’04.

[4] P. Indyk and R. Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. In STOC’98, pages 604–613.

[5] J. Lin and C. Dyer. Data-Intensive Text Processing with MapReduce,
volume 3. 2010.

[6] X. Liu, Q. He, Y. Tian, W. Lee, J. McPherson, and J. Han.
Event-based social networks: Linking the online and offline social
worlds. In SIGKDD’12.

[7] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein. Distributed GraphLab: a framework for machine
learning and data mining in the cloud. PVLDB, 5(8):716–727, 2012.

[8] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph
processing. In SIGMOD’10, pages 135–146.

[9] S. Navlakha, R. Rastogi, and N. Shrivastava. Graph summarization
with bounded error. In SIGMOD’08, pages 567–580.

[10] J. Rissanen. Modeling by shortest data description. Automatica,
14:465–471, 1978.

[11] B. Shao, H. Wang, and Y. Li. Trinity: A Distributed Graph Engine on
a Memory Cloud,. In SIGMOD’13, 2013.

[12] Y. Tian, R. Hankins, and J. M. Patel. Efficient aggregation for graph
summarization. In SIGMOD’08, pages 419–432.

[13] N. Zhang, Y. Tian, and J. M. Patel. Discovery-driven graph
summarization. In ICDE’10, pages 880–891.

