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ABSTRACT

To meet the challenge of analyzing rapidly growing graph
and network data created by modern applications, a large
number of graph databases have emerged, such as Neo4j and
JanusGraph. They mainly target low-latency graph queries,
such as finding the neighbors of a vertex with certain prop-
erties, and retrieving the shortest path between two vertices.
Although many of the graph databases handle the graph-only
queries very well, they fall short for real life applications in-
volving graph analysis. This is because graph queries are not
all that one does in an analytics workload of a real life applica-
tion. They are often only a part of an integrated heterogeneous
analytics pipeline, which may include SQL, machine learning,
graph, and other analytics. This means graph queries need
to be synergistic with other analytics. Unfortunately, most
existing graph databases are standalone and cannot easily in-
tegrate with other analytics systems. In addition, many graph
data (data about relationships between objects or people) are
already prevalent in existing non-graph databases, although
they are not explicitly stored as graphs. None of existing
graph databases can retrofit graph queries onto these existing
data without transferring or transforming data. In this paper,
we propose an in-DBMS graph query approach, IBM Db2
Graph, to support synergistic and retrofittable graph queries
inside the IBM Db2™relational database. It is implemented
as a layer inside Db2, and thus can support integrated graph
and SQL analytics efficiently. Db2 Graph employs a novel
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graph overlay approach to expose a graph view of the rela-
tional data. This approach flexibly retrofits graph queries to
existing graph data stored in relational tables, without expen-
sive data transfer or transformation. In addition, it enables
efficient execution of graph queries with the help of Db2
relational engine, through sophisticated compile-time and
runtime optimization strategies. Our experimental study, as
well as our experience with real customers using Db2 Graph,
showed that Db2 Graph can provide very competitive and
sometimes even better performance on graph-only queries,
compared to existing graph databases. Moreover, it optimizes
the overall performance of complex analytics workloads.
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1 INTRODUCTION

Rapidly growing social networks and other graph datasets
have created a high demand for graph analytics systems.
Graph analytics systems can be generally categorized into
two types: graph processing systems and graph databases.
The former, graph processing systems, such as Giraph [1],
GraphLab [35], and GraphX [29], focus on batch processing
of large graphs, e.g. running PageRank on a graph. This
type of analysis is usually iterative and long running. In
contrast, the latter, graph databases, such as Neo4j [12] and
JanusGraph [10], focus more on the relatively low-latency
graph queries, such as finding the neighbors of a vertex with
certain properties, and retrieving the shortest path between
two vertices. In this paper, we focus on the low-latency graph
queries in the latter case.
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There are a large number of graph databases, including
Neo4j [12], JanusGraph [10], Sqlg [20], SQLGraph [41], Ori-
entDB [15], TigerGraph [22], Sparksee [19], ArangoDB [3],
InfiniteGraph [9], BlazeGraph [4], GraphGen [44], GRFu-
sion [30], Oracle Spatial and Graph [14], and SQL Server’s
Graph extension [6], etc. They can be roughly divided into
two camps. The first camp is native graph databases, with
specialized query and storage engines built from scratch just
for graphs. Neo4j, OrientDB, TigerGraph, and Sparksee all
belong to this camp. The second camp of graph databases,
including JanusGraph, Sqlg, SQLGraph, ArangoDB, Infinite-
Graph, BlazeGraph, GraphGen, GRFusion, Oracle Spatial and
Graph, and SQL Sever Graph extension, all delegate their
storage engines to existing data stores, be it either a SQL
database (e.g. Sqlg, SQLGraph, InfiniteGraph, GraphGen, GR-
Fusion, Oracle Spatial and Graph, and SQL Server Graph
extension), a key-value store (e.g. JanusGraph), a document
store (e.g. ArangoDB), or an RDF store (e.g. BlazeGraph). We
call them hybrid graph databases. A hybrid graph database
builds a specialized graph query engine, but resorts to an
existing data store to handle the persistence of data.

Both camps of graph databases generally handle graph-
only query workload very well. But they are still inadequate
for real life applications involving graph analysis. This is
because graph queries are not all that one does in an analyt-
ics workload of a real life application. They are often only a
part of an integrated heterogeneous analytics pipeline, which
may include SQL, machine learning (ML), graph and other
types of analytics. Of course, given the power and preva-
lence of SQL, graph queries are often combined with SQL
queries in practice. In addition, graph data itself can be used
in SQL, ML or other types of analytics as well. For example,
the properties of graph vertices can be queried in SQL ana-
lytics or be used as the features for training an ML model.
And perhaps more importantly, many graph data are already
prevalent in the existing non-graph stores. Sometimes this
is due to legacy reasons. For example, many graph data and
graph queries have already existed before the boom of graph
databases. In addition, very often, the same data which pow-
ered the existing non-graph applications can also be treated
as graph data (e.g. data about relationships between objects
or people) and be used for new graph applications. Another
reason behind the prevalence of graph data in non-graph
stores is that the applications made conscious decisions to
manage graph queries themselves instead of using special-
ized graph databases to achieve the good performance of the
overall applications with different analytics workloads. In
summary, graph queries need to be synergistic with other
analytics and retrofittable to existing data.

Unfortunately existing graph databases cannot satisfy
the synergistic and retrofittable requirements. Native graph

databases force applications to import data into the propri-
etary storage engine either at runtime or in a preprocessing
step, perform the graph queries, and export the result data to
continue with the rest of the analytics pipeline. Data import
and export can incur a lot of overhead. In contrast, stor-
ing graph data in the same storage engine as the data for
other analytics can help eliminate the data transfer over-
head. This could be a potential benefit for the hybrid graph
databases. However, unfortunately, almost all of the hybrid
graph databases dictate the schema of storing graphs in the
storage engines. Especially, when SQL databases and key-
value stores are used as the storage engines, the schema is
so convoluted and unnatural that by just querying the stored
data using the query engines of the underlying data stores,
it is almost impossible to get any meaningful result out. For
example, SQLGraph “shreds" the vertex adjacency lists using
a hash function into a number of reserved columns in a table,
and spills into a second table when hash collision happens.
JanusGraph stores the entire adjacency list of a vertex in
a somewhat encrypted form in one column. Although the
graph data is stored in a SQL database or a key-value store,
the convoluted schema makes it impossible to decipher what
is stored, and thus makes the graph data unusable for any
analytics directly using the query engines of underlying data
stores. This means that the application has to replicate the
same data and transform them using a more natural schema,
if it wants to access the graph data in other analytics, and
of course goes through the trouble to make sure that the
two copies are consistent in case of updates. Few hybrid
graph databases, like Sqlg, do use a more natural schema to
store graph data in a SQL database, thus making the share
of graph data among different analytics possible. However,
the schema is also dictated, so it is impossible to retrofit to
existing graph data that are not stored according to the rigid
schema. Microsoft SQL Server Graph extension extended
SQL with some graph querying capabilities. However, it re-
quires the explicit creation of vertex and edge tables before
they can be used for graph queries. Moreover, certain im-
plicit columns have to be present in the vertex and edge
tables. As a result, it cannot retrofit to existing relational
data. Oracle Spatial and Graph, GRFusion and GraphGen
can support graph queries on existing relational data. How-
ever, all three adopted the approach of loading or extracting
graphs from the relational tables, and then materializing the
graph structures in memory. Graph queries are only served
on the in-memory copy of the data. Essentially, this approach
also keeps a second, transformed, copy of the data, only that
the secondary copy is in memory. As a result, when updates
happen to the underlying relational data, the graph queries
won’t see the latest data.

In this paper, we propose a true in-DBMS graph query ap-
proach, IBM Db2 Graph, to support synergistic and retrofittable
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Figure 1: Synergistic graph queries inside Db2

graph queries inside IBM Db2™ [8]. Our goal is not to build
the fastest graph database in the world, but rather to build
graph query support inside Db2 that is synergistic with other
analytics and retrofittable to existing data. On graph-only
queries, it may not be the most efficient, but by avoiding
the overhead of transferring and transforming data, it pro-
vides the best overall performance for complex analytics
workloads in the real world.

Db2 Graph is a layer inside Db2 specialized for graph
queries, as illustrated in Figure 1. It takes in a graph query
as the input, and executes the graph query by utilizing the
Db2 query engine through SQL. Most importantly, graph and
SQL queries operate on exactly the same data stored in the
database with a natural relational schema. Db2 Graph em-
ploys a graph overlay approach to expose a graph view of the
relational data. This approach enables graph query capabili-
ties on existing relational data, and even supports different
vertex and edge types with various sets of properties in the
same graph. In addition, Db2 Graph aggressively applies
various compile-time and runtime optimization strategies
to efficiently execute graph queries utilizing the Db2 rela-
tional engine. Db2 Graph supports the popular TinkerPop
Gremlin [2] as the graph query language, since it covers a
broad set of graph operations and is widely adopted in the
industry. Note that our in-DBMS graph query approach can
be easily generalized to other graph query languages and
other databases.

Db2 Graph is designed to be a practical graph database
solution for real applications. Therefore, besides query per-
formance, synergy with other analytics, and retrofittability
to existing data, other practical issues, such as transaction
support, access control, and compliance to audits and reg-
ulations, are equally important for Db2 Graph. Luckily, by
riding on the mature and robust Db2 technology, many of
these features come for free. Transaction support has been
traditionally a sore spot for graph databases: most existing
graph databases either have no support or very weak sup-
port for transactions. In contrast, transaction support has
been the strongest suit for RDBMSs. By embedding itself
inside Db2, Db2 Graph relies on the powerful transaction
support in Db2 to handle graph updates. Since SQL and graph
share the same data underneath, any update to the relational
tables from the transactional side is immediately available

to the graph queries. Access control is another weak point
for many existing graph databases. Again, as no secondary
copy of data (either on disk or in memory) is created in Db2
Graph, Db2 Graph directly inherits Db2’s mature access con-
trol mechanisms. Finally, Db2 also brings in the bi-temporal
support (i.e. supporting both system time and business time)
for free. This feature is crucial for compliance to audits and
regulations (e.g. GDPR), but unfortunately is missing in most
existing graph databases.

This paper is organized as follows. Section 2 reviews re-
lated works. Section 3 provides technical background on
property graphs and Gremlin. Section 4 presents an example
scenario used throughout this paper. Section 5 discusses the
graph overlay approach. Section 6 describes the system ar-
chitecture and implementation. Section 7 then presents the
real world usage of Db2 Graph. We report empirical studies
in Section 8 and finally conclude in Section 9.

2 RELATED WORK

Graph Query Languages. Despite the numerous graph
databases on the market, there is no standard graph query
language. However, most of the existing graph databases
adopt Tinkerpop Gremlin [2]. Cypher [28] is a declarative
graph query language introduced by Neo4j. Oracle proposed
another declarative language based on SQL, called PGQL [18].
GSQL [7] is the SQL-like graph query language adopted by
TigerGraph. The LDBC [21] Graph Query Language Task
Force has proposed G-Core [24]. Finally, Graph Query Lan-
guage (GQL) [5] is a recent ongoing effort towards a standard
graph query language, which builds on SQL and integrates
ideas from Cypher, PGQL, GSQL, and G-CORE.

Graph Databases. The need to support graph queries
has led to a plural of graph databases. Comparisons on vari-
ous graph databases can be found in [26, 32-34]. Neo4j [12],
OrientDB [15], TigerGraph [22], and Sparksee [19] are ex-
amples of native graph databases, among which Neo4;j is the
most popular. Neo4j employs an index-free adjacency tech-
nique, which stores each vertex together with its adjacent
vertices and edges to get good performance on data retrieval
at runtime. To further improve performance, Neo4;j also heav-
ily caches graph data in memory. Examples of hybrid graph
databases include JanusGraph [10], Sqlg [20], SQLGraph [41],
ArangoDB [3], InfiniteGraph [9], BlazeGraph [4], Graph-
Gen [44], GRFusion [30], Oracle Spatial and Graph [14], and
SQL Server’s Graph extension [6].

Although SQLGraph bases on the same back-end database,
IBM Db2 [8], as our Db2 Graph, it focuses on graph-only
queries. To get the best performance on graph queries, it
“shreds" the vertex adjacency lists using a hash function into
a number of reserved columns in a table, and spills into a
second table when hash collision happens. It is impossible for
the shredded graph data to be used in normal SQL analytics.



Similar to Db2 Graph, Sqlg stores graph data in normal
schema, but it dictates the schema. Therefore, it cannot retro-
fit to existing relational data. At loading time, Sqlg analyzes
all the data and decides on how to store the graph.

GraphGen extracts graphs from relational data via a Datalog-
based DSL and stores a condensed in-memory representation
of the extracted graphs. Graph queries and analytics are then
carried out on the in-memory representation. GRFusion [30]
extends VoltDB [23] to define graph views on relational tables,
and to materialize graph structures in memory for the graph
queries to execute on. Oracle Spatial and Graph [14] employs
an access layer to ingest data from the Oracle databases or
other sources into the Parallel Graph AnalytiX (PGX) [16],
which is an in-memory graph analytic framework. All the
above three systems suffer from the same problem of query-
ing staled data, in face of frequent updates.

Microsoft SQL Server’s graph extension [6] also allows
some limited graph query capability inside the SQL Server
database. However, it cannot retrofit to existing relational
tables. One has to create vertex table(s) and edge table(s) first,
then populate data into these tables. Implicit columns are
automatically added to each vertex/edge table by the system,
in order to uniquely identify each vertex/edge.

Cytosm [40] is a middleware application that automati-
cally converts property graphs to the appropriate schema
in a target backend storage (including relational databases)
and translates Cypher queries to the target querying lan-
guage. However, Cytosm doesn’t apply the sophisticated op-
timization strategies that Db2 Graph employs during query
compilation and execution.

Graph Processing on RDBMSs. There are a number of
works [27, 31, 45] that advocate using RDBMSs for batch
graph processing. However, they are not designed for low-
latency graph queries, which is the focus of this paper.

3 BACKGROUND

Property Graph Model. A property graph contains vertices
and edges. Vertices represent discrete objects, and edges cap-
ture the relationships between vertices. Both vertices and
edges can have arbitrary number of properties, represented
as key-value pairs. Each vertex/edge is uniquely identified
with an id in a property graph. Vertices/edges can also be
tagged with labels to distinguish the different types of object-
s/relationships in the graph. Figure 2(b) shows an example
property graph, modeling the relationships between patients
and diseases, as well as between different diseases. The ver-
tex ids are the numbers shown inside the circles, and the
edge ids are the numbers on the edges. There are two types
of vertices labeled as patient and disease respectively (rep-
resented by the blue text next to each vertex in Figure 2(b)).
An edge connecting a patient to a disease represents the
hasDisease relationship, and an edge connecting a disease

to another denotes the isa relationship (the former disease
is a subtype of the latter) in the disease ontology (edge labels
are the red texts on the edges). Vertex properties are shown
inside blue shaded boxes, whereas edge properties are shown
inside yellow shaded boxes (vertices or edges are allowed to
have no properties). For example, vertex @ has properties
patientID, name, address, and subscriptionID;and edge
—9 — has one property called description.

Apache TinkerPop and Gremlin. Apache TinkerPop [2]
is an open source graph analytics framework that allows
users to model their data as property graphs and analyze
graphs using the Gremlin graph traversal language. Tin-
kerpop provides a core API for vertices, edges, and graphs.
This core API essentially serves as an abstraction over differ-
ent graph database implementations. The Gremlin language
layer is built on top of the core APL Gremlin is more of
an imperative language for traversing through a graph, al-
though it also has some declarative features. The Gremlin
language layer allows for extensions to support Domain
Specific Languages (DSLs) and to add Provider Strategies
for more optimized traversals for a specific graph database
implementation. In addition to the two main layers, Tinker-
pop provides a Read-Eval-Print Loop (REPL) environment,
called Gremlin Console, and a service for remotely executing
Gremlin scripts, called Gremlin Server.

In essence, TinkerPop is a collection of tools and facilities
for supporting querying property graphs using Gremlin. The
TinkerPop stack has made it very easy to develop a new
graph database by simply implementing the core API. As a
result, Gremlin, as well as other parts of the Tinkerpop stack,
has been adopted by most graph databases. We will follow
the same approach in this paper.

4 AN EXAMPLE SCENARIO

We will use the following example throughout the paper to
motivate and illustrate Db2 Graph. This example is modeled
after a real customer application and represents a wide range
of real application needs.

Consider a health care application that combines patients’
medical records with exercise data collected from wearable
devices. Figure 2(a) shows the tables of data used in this appli-
cation. The Patient table contains some basic information
about a patient, as well as the subscriptionID that links
the patient to the wearable device data in the DeviceData
Table. A patient’s disease information is captured in the

HasDisease table. The actual disease is identified by a diseaseID

which is also the unique key in the Disease table. The rela-
tionships between diseases (e.g. type 2 diabetes is a subtype
of diabetes) are captured in the DiseaseOntology Table. Fi-
nally, the DeviceData table contains the daily exercise in-
formation for a user.
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! _Patient Table HasDisease Table

| | patientlD | name address | subscriptionID patientlD | diseaselD | description
i

V1 Alice 115 1 64572326

i Disease Table DiseaseOntology Table

| | diseaselD | conceptCode conceptName sourcelD targetID type

i 64572326 | 44054006 “Type 2 diabetes” 64572326 73211009

“isa”

DeviceData Table
subscriptionID date steps execiseMinutes

activeEnergy

115 11/15/2018 9039 25 208
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(b) The property graph modeled on some example tables

Figure 2: An example scenario

The patients’ medical records and the disease ontology
data have always been stored in the relational database to
support the existing applications of the customer. However,
the customer also wants to support new applications that
combine these data with wearable device data. In addition,
they also wish to view the patient-to-disease and the disease-
to-disease relationships (the 4 tables in the dashed-line box of
Figure 2(a)) in the context of a graph as shown in Figure 2(b)
and query the graph. Moreover, the new applications will re-
quire integrating graph queries with SQL analytics together.

Db2 Graph provides three interfaces for users to con-
duct graph queries: a command line interface called Gremlin
console, a simple Db2 table function for submitting graph
queries inside SQL, and programming APIs in a number of
host languages including Java, Scala, Python and Groovy.
As a result, there are different ways Db2 Graph can support
synergistic SQL and graph queries together in one appli-
cation. At the developing stage, users can have a SQL con-
sole and a Gremlin console opened side by side to query
the same underlying data either as relational tables or as a
property graph. The demo in [42] showed such an ad hoc
insurance claim analysis using Db2 Graph (video available
at https://www.youtube.com/watch?v=C5vmcYKEN-U).

Db2 Graph introduces a simple polymorphic table func-
tion [17] in Db2, called graphQuery, to submit graph queries
inside SQL and bring the results back as a table!. For example,
the following SQL statement finds patients that have similar
diseases as those of a particular patient (with patientID=1),
and compares their daily exercise patterns.

SELECT patientID, AVG(steps), AVG(execiseMinutes)
FROM DeviceData AS D,

TABLE (graphQuery(‘gremlin’, ‘similar_diseases = g.V()
.hasLabel(\‘patient\’).has(\‘patientID\’, \'1\").out(\'hasDisease\’)
.repeat(out(\‘isa\’).dedup().store(\'x\)).times(2)
repeat(in(\isa\’).dedup().store(\'x\")).times(2).cap(\’x\").next();
gV(similar_diseases).in(\'hasDisease\’).dedup()
.values(\'patientID\’, \'subscriptionID\’)’))

AS P (patientID long, subscriptionID long)
WHERE D.subscriptionID = P.subscriptionID
GROUP BY patientID

In this query, finding the patients with similar diseases
is done inside a graph query (highlighted in blue): it first
traverses from the patient vertex to the connecting disease
vertices, then traverses the disease ontology 2-hops up and
2-hops down, collecting all the diseases encountered along
the way as similar diseases, finally finds all the patients that
have any of these diseases and returns their patientIDs
and subscriptionIDs. Afterwards, SQL joins the resulting
table with the DeviceData table, and aggregates the average
steps and execiseMinutes per patient.

At production stage, applications often use the JDBC API
along with the programming API of Db2 Graph to mix SQL
and graph queries in one workload. This approach is the
most flexible and powerful in performing synergistic graph
and SQL queries together in one application.

The example scenario described in this section is the per-
fect embodiment of the synergy between SQL and graph
queries. Each does what it is good at, and together accom-
plish the task synergistically. Graph queries excels at navi-
gating through complex relationships, whereas SQL is good
at the heavy-lifting group-by and aggregation.

Using Db2 Graph, there is no need to have a separate
system to handle graph queries, and even no need to replicate
the four tables in a different format just for graph queries.
Everything can be done in the same Db2 with no change to
the existing tables. As a result, the graph data is always up
to date with the latest information from the transactional
system. For example, when patient information changes,
the graph queries see these changes immediately. Moreover,
the temporal support in Db2 allows all of our graphs to be
temporal as well. For example, one can view a graph "as of"
different time snapshots.

INote that the graphQuery function only supports Gremlin graph queries
with return results that can be converted into a collection of rows.
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5 OVERLAYING GRAPHS ON TABLES

In this section, we describe the graph overlay approach in
Db2 Graph. Graph databases always present a single prop-
erty graph with a vertex set and an edge set for users to
query. Of course, the single graph doesn’t have to be fully
connected, and there can be different types of vertices and
edges. In Db2 Graph, we essentially map each vertex/edge
in the vertex/edge set to a single row in the database. Over-
laying a single property graph onto a set of relational tables
really boils down to mapping the vertex set and the edge set
of the graph to the relational tables.

For the vertex set, the mapping needs to specify: 1) what
table(s) store the vertex information, 2) what table column(s)
are mapped to the required id field, 3) what is the label for
each vertex (defined from a table column or a constant), and
4) what columns capture the vertex properties, if any. Simi-
larly, for the edge set, the mapping needs to specify: 1) what
table(s) store the edge information, 2) what table columns
are mapped to the required id, src_v (source vertex id), and
dst_v (destination vertex id) fields, 3) what is the label for
each edge (defined from a table column or a constant), and 4)
what columns correspond to the edge properties, if any. This
graph overlay mapping is achieved by an overlay configura-
tion file in Db2 Graph. Note that the mapping is not restricted
to tables only, it can be also on created views of tables. Be-
low, we show an example overlay configuration file in JSON
format for mapping a property graph like in Figure 2(b) to
the 4 tables in the dashed-line box of Figure 2(a).

1| "v_tables": [

2 1 {

3 "table_name": "Patient",

4 "prefixed_id": true,

5 "id": "'patient'::patientID",

6 "fix_label": true,

7 "label": "'patient'",

8 "properties": ["patientID", "name", "address", "
subscriptionID"]

913,

10 | {

11 "table_name": "Disease",

12 "id": "diseaseID",

13 "fix_label": true,

14 "label": "'disease'",

15 "properties": ["diseaseID", "conceptCode", "
conceptName"]

16 | 31,

17 | "e_tables": [

18 | {

19 "table_name": "DiseaseOntology",

20 "src_v_table": "Disease",

21 "src_v": "sourcelID",

22 "dst_v_table": "Disease",

23 "dst_v": "targetID",

24 "prefixed_edge_id": true,

25 "id": "'ontology '::sourcelD::targetID",

26 "label": "type"

27 |}

28 | {

29 "table_name": "HasDisease",

30 "src_v_table": "Patient",

31 "src_v": "'patient'::patientID",

32 "dst_v_table": "Disease",

33 "dst_v": "diseaseID",

34 "implicit_edge_id": true,
35 "fix_label": true,

36 "label": "'hasDisease'"
37 | 3]

The configuration file defines a set of vertex tables (v_tables,
Line 1-16) for representing the vertex set of the property
graph, as well as a set of edge tables (e_tables, Line 17-
37) for representing the edge set of the property graph. In
this example, Patient and Disease are the vertex tables,
and DiseaseOntology and HasDisease are the edge tables.
Then for each such vertex/edge table, it specifies how to
define the required fields of a vertex/edge, as well as the
properties. For a vertex, the required fields are id and label;
for an edge, the required fields are id, label, src_v (source
vertex id), and dst_v (destination vertex id).

In the property graph model, the id field is a requirement
for each vertex and it has to be unique across the entire
graph. The id field can be defined by one or more columns
that uniquely identify a vertex, like column diseaselID in
Line 12. However, when there are multiple relational tables
mapping to the vertex set of a property graph, the unique key
of a table may not always uniquely identify the associated
vertex in the whole vertex set (across tables). As a result, we
need to prefix the unique key with a unique table identifier to
define the id field of a vertex. The unique table identifier can
be the table name or some other unique constant value. This
is the reason why Line 4 sets prefixed_id to true, and Line
5 defines id as " ‘patient’::patientID". Here ‘patient’
is a string constant, which serves as a unique table identifier
of the Patient table. If prefixed_id is not set, it is false by
default. As will be discussed in Section 6.3, prefixed ids can
lead to more optimized performance at runtime.

The label field is also required in the property graph model.
It can be mapped either to a column of the table, e.g. column
type in Line 26, or to a constant, e.g. ‘patient’ in Line
7. In common practice, different types of vertices or edges
are typically stored in separate tables, which implies that all
vertices or edges in a single table share the same label value.
This means it is not necessary, and sometimes not possible, to
use a column (in most cases, there is no such column) in the
relational table to define the label field. For this reason, we
introduce a feature to specify that all vertices or edges from
a table have the same label and set that label to a constant
string value. Lines 6 and 7 show such an example for the
Patient table. As we will discuss in Section 6.3, this feature
provides an optimization opportunity to narrow down the
set of tables to query from at runtime.

Besides id and label fields, each edge table also needs to
describe how the source and destination vertex ids, src_v
and dst_v respectively, are defined. If all the source/desti-
nation vertices of an edge table come from one vertex table,



one can also specify that source/destination vertex table,
src_v_table/dst_v_table. In such cases, the source/des-
tination vertex id definition has to match exactly with the
id definition of the corresponding vertex table. For exam-
ple, the src_v definition " ‘patient’::patientID" of the
HasDisease edge table (Line 30-31) matches with the id def-
inition " ‘patient’::patientID" (Line 4-5) of the Patient
vertex table. In this case, the HasDisease.patientID col-
umn and the Patient.patientID column happen to have
the same name, but they don’t need to. As another exam-
ple, the src_v definition of the DiseaseOntology edge ta-
ble (Line 20-21) still matches with the id definition of the
Disease vertex table (Line 12), although the column names
are different. When src_v_table/dst_v_table is specified,
it establishes a relationship between a vertex table and an
edge table, and subsequently provides an optimization op-
portunity to reduce the search space during graph traversal,
as will be discussed in Section 6.3.

The definition of edge ids encounters similar problems as
the vertex ids, so we can follow the similar approach (e.g.
Line 24-25). However, for the edges, in most cases, the combi-
nation of the three fields, src_v: : label: :dst_v can already
uniquely identify an edge in the entire edge set. As a result,
we don’t need to always explicitly specify edge id fields. In
Lines 34, by setting implicit_edge_id to true, we indicate
that the edges from HasDisease table will use the implicit
src_v::label: :dst_v as the edge ids. As we will show in
Section 6.3, the implicit id definitions for edges will bring in
some optimization opportunities for query execution.

The properties of a vertex/edge can be mapped to columns
of the table (e.g. Line 8). Vertices/edges are allowed to have no
property. In that case, one can define an empty set []. Note
that if properties is not specified in the configuration, Db2
Graph automatically takes all the columns in a table except
the ones already used for the required fields for defining the
properties. For example, this configuration file doesn’t spec-
ify properties for the HasDisease table, but it is equivalent
to defining ["description"] in the file.

Note that one table can serve as both a vertex table and
an edge table in a graph overlay. This is common for tables
with foreign keys, as they store both the information about
objects and their relationships to other objects. In addition,
sometimes one table can serve as multiple edge tables, which
is very common for the fact table in a star schema.

Our graph overlay approach maps each row of a table to
either a vertex or an edge. For cases that do not fit in this
model, users can usually define views on existing tables to
work around. For example, if a vertex requires information
from a row in Table A and another row in Table B, we can
create a view C that joins A and B, and then use C in the
graph overlay. As another example, if a row of a table can be
mapped to two different vertices, we can create two views

L B

=

that extract the corresponding information for each vertex,
and use the views in the graph overlay.

A Surprising Benefit. Most existing graph databases
start from a graph, whereas Db2 Graph starts from rela-
tional tables and maps them into a graph. While we never
envisioned it, through customer usage we found a surpris-
ing benefit of this graph overlay approach. Customers often
would like to define new types of vertices or relationships
based on existing graphs. For instance, in an existing graph,
patients are linked to doctors who are then linked to service
providers. A customer wanted to create new edges that di-
rectly link patients to service providers, i.e. if p—d and d—s,
then p—s. Previously using a standalone graph database, the
customer had to insert millions of edges to the graph. But us-
ing Db2 Graph, it is as simple as defining a non-materialized
view that joins two existing edge tables and map that view as
an edge table in the graph overlay. Moreover, when existing
edges change (e.g. the edge d—s is deleted), the customer
previously had to write customized logic to ensure that the
derived edges are changed accordingly (e.g. deleting p—s),
whereas in Db2 Graph these changes are automatically re-
flected in the view, and thus in the overlaid graph.

ALGORITHM 1: Identify Vertex Tables and Edge Tables

:tables
primary key and foreign key information

input //The set of input tables with schema and

Initialize: vertexTables = (0, edgeTables = 0
for t € tables do
if t.hasPrimaryKey() then
vertexTables.add(t)
if t.foreignKeys.nonEmpty() then
L edgeTables.add(t)

//t is a vertex table

//t is also an edge table

else
L if t.foreignKeys.size() > 2 then

| edgeTables.add(t) //t is an edge table

output :(vertexTables, edgeTables)

5.1 Automatic Overlay Generation

The overlay configuration files can be manually created by
the application developers who wish to query relational ta-
bles as graphs. One can create multiple overlay configuration
files on the same set of tables, so that they can be queried
as different graphs. Manual specification provides a lot of
flexibility, but can also be labor intensive, if there are a large
number of tables. For example, Db2 Graph was once used to
overlay a property graph onto 135 tables! We now discuss
how to automate the generation of overlay configuration for
a database in a principled way.

Our approach relies on table schemas, along with the
primary and foreign key constraints, to infer relationships
among the data in relational tables. This shares a lot of simi-
larity with the work on converting relational databases to
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ALGORITHM 2: Generate Overlay Configuration

input

:vertexTables, edgeTables

Initialize: vertexTableConfs = @), edgeTableConfs =
for t € vertexTables do

vtc = newVertexTableConf()

vtc.idField = combine(t.uniquelD, t.primaryKey)
vtc.hasFixedLabel = true

vtc.fixedLabel = t.tableName

vtc.propertyFields = t.columns - t.primaryKey
vertexTableConfs.add(vtc)

for t € edgeTables do

if t.hasPrimaryKey() then

for fk € t.foreignKeys do

etc = newEdgeTableConf()

etc.hasImplicitEdgelD = true

etc.srcvTable = t.tableName

etc.srcvField = combine(t.uniquelD, t.primaryKey)
etc.dstvTable = fk.refTable.tableName
etc.dstvField = combine(fk.ref Table.uniquelD, fk)
etc.hasFixedLabel = true

etc.fixedLabel = concat(t.tableName, fk.ref Table.tableName)
etc.propertyFields = t.columns - t.primaryKey - fk
edgeTableConfs.add(etc)

else
for fk1, fk2 € t.foreignKeys and fki1#fk2 do
etc = newEdgeTableConf()
etc.hasImplicitEdgeID = true
etc.srcvTable = fk1.ref Table.tableName
etc.srevField = combine(fk1.ref Table.uniquelD, fk1)
etc.dstvTable = fk2.refTable.tableName
etc.dstvField = combine(fk2.ref Table.uniquelD, fk2)
etc.hasFixedLabel = true
etc.fixedLabel = concat(fk1.ref Table.tableName, t.tableName,
fk2.ref Table.tableName)
etc.propertyFields = t.columns - fk1 - fk2
| edgeTableConfs.add(etc)

output :(vertexTableConfs, edgeTableConfs)

graph databases [25, 36-38, 43], since the data conversion
also uses schema and functional dependencies to convert re-
lational data to graphs. But the major difference between the
two is that data conversion creates a completely new copy
of the original data, whereas graph overlay merely creates
a virtual graph view on top of the original data. As a result,
the graph overlay generation needs to come up with a graph
schema that more faithfully captures the semantics of the
relational data, whereas the data conversion approaches can
have more freedom. For example, the approach in [25] makes
every attribute (column) of a table as a vertex in the graph.

Db2 Graph provides a toolkit, called AutoOverlay, for au-
tomatically generating a graph overlay. A user can specify
which database he/she wants to generate the overlay con-
figuration for. If only a subset of tables in a database are

of interest, the user can also explicitly list these tables. Au-
toOverlay automatically generates the overlay configuration
in the following steps:

Step 1: AutoOverlay first queries Db2 catalog to get all the
metadata information for each table such as table schema,
and primary key/foreign key constraints.

Step 2: Then, it iterates through all tables to find out the
vertex tables and edge tables as shown in Algorithm 1. Note
that a table can serve as both a vertex table and an edge table.
Any table with a primary key will be served as a vertex table.
If a table has a primary key and one or more foreign keys
(e.g. a fact table in a star schema), it will also be used as one
or more edge tables, one for each foreign key. If a table has
k (k > 2) foreign keys but no primary key (many-to-many
relationships), then it will be used as (';) edge tables, one for
each pair of foreign keys.

Step 3: Finally, AutoOverlay maps the required fields in
the property graph model to columns in the vertex/edge
tables, as shown in Algorithm 2. For each vertex table, the
primary key columns together with a unique table identifier
are used to define the id field. The label field is defined as a
fixed label with the table name as its value. All remaining
columns, except the primary key columns, will be properties.

For each edge table with a primary key and a foreign key,
the src_v_table field is defined as the table itself, and the src_v
field is defined as the primary key columns prefixed with the
table identifier. The dst_v_table field is the referenced table
(table referenced by the foreign key), and the dst_v field is
the foreign key columns prefixed with the identifier of the
referenced table. The label field is the concatenation of the
table name and the referenced table name.

For each edge table with a pair of foreign keys, the src_v_table
field is the 1% referenced table, and the src_v field is the 15¢
referenced table identifier combined with the 1°? foreign
key columns. The dst_v_table field is the 2"? referenced ta-
ble, and the dst_v field is the 2"? referenced table identifier
combined with the 2"? foreign key columns. The label field
is the concatenation of the table name and the names of
the referenced tables. For both cases of edge tables, we use
the implicit src_v::label::dst_v as the edge id. Finally, all re-
maining columns, except for primary key and foreign key
columns, are properties.

As can be seen in these steps, we heavily rely on the
primary and foreign key constraints to infer relationships
among the data in relational tables. If no constraint is spec-
ified, one can still manually specify overlay configuration.
After the overlay configuration is generated automatically by
AutoOverlay, the user can still edit the configuration file to
modify the mapping information to better fit the application.
Currently, the AutoOverlay toolkit is not integrated with
the Db2 catalog, so when there is any DDL change (table
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Figure 3: Db2 Graph architecture

creation, deletion, or schema change), the user needs to re-
run AutoOverlay to generate the new overlay. We plan to
better integrate it with the Db2 catalog so that DDL changes
can be automatically dealt with in the future. We also plan
to further employ machine learning techniques to infer the
relationships among tables.

6 ARCHITECTURE

Figure 3 shows the overall architecture of Db2 Graph. It in-
cludes the TinkerPop stack and four native system modules.
The TinkerPop stack compiles an input Gremlin query, gen-
erates a query plan, and further optimizes the query plan
by applying the optimized traversal strategies provided in
our Traversal Strategy module. After that the query plan is
executed by calling the graph structure API provided in our
Graph Structure module. The implementation of the graph
structure API, in turn, requires accessing the graph overlay
information maintained in the Topology module and submit-
ting SQL queries generated via the SQL Dialect module.

6.1 End-to-End System

Let’s use the query g.V() .has(‘name’, ‘Alice’).outE()
(retrieving the outgoing edges of the vertices that have a
property called ‘name’ with value ‘Alice’) as an example
to discuss how the different modules of Db2 Graph work
together to execute the query.

Opening a Graph for Traversal. Before we can run the
query, the corresponding property graph g has to be opened

for traversal first via g=Db2Graph.open(‘config.properties’)

.traversal(). The file config.properties specifies the data-
base access information, the graph overlay configuration file,
and other properties for the property graph. The Topology
module reads the overlay configuration file and establishes
the overlay mapping from the property graph onto the re-
lational tables in the database by accessing the database
metadata. Later, the Graph Structure module refers to the
overlay mapping in the Topology module to properly carry
out its functions. In particular, the overlay topology can

tell us which table(s) contains vertices/edges with a partic-
ular label or a particular property name, and whether the
source/destination vertices of all the edges in an edge table
are from a specific vertex table. As we will show later in
Section 6.3, this information is crucial in reducing the search
space during query execution.

Query Compilation and Optimization. When the query
g.V().has(‘name’, ‘Alice’).outE() is issued, it first
goes through the Tinkerpop stack, where it’s parsed and
compiled into a logical query plan with a number of steps.
Each step captures a transformation (e.g. outE()), filter (e.g.
hasLabel()), side-effect (e.g. store()), or branch function
(e.g.union()). The example query will be compiled into a log-
ical plan with 3 sequential steps: the first step, corresponding
to V(), is a transformation step, called GraphStep (since the
transformation is applied on a graph), which returns all the
vertices of the graph; then the second step that corresponds
to has(‘name’, ‘Alice’) is a filter step, called HasStep,
which filters the vertices and only retains the ones having a
property called ‘name’ with value ‘Alice’; and finally the last
step (that corresponds to outE()) is another transformation
step, called VertexStep (since the transformation is applied
on a vertex), which returns all the outgoing edges of the
resulting vertices from the second step.

Analogous to query optimization in a database optimizer,
a Tinkerpop logical plan can be mutated into a more op-
timized plan by applying a number of traversal strategies.
Tinkerpop has already included a number of such built-in
traversal strategies, but it also opens up a Provider Strat-
egy API for graph database developers to add customized
optimization strategies specific to the particular graph data-
base implementation. In Db2 Graph, we add a number of
such optimized provider strategies in the Traversal Strategy
module, which will be discussed in Section 6.2. Actually, the
3-step plan for the example query will be mutated into a
more optimized plan using the optimized strategies provided
in Db2 Graph. But for the simplicity of explanation in this
subsection, let’s assume the 3-step plan is unchanged.

Query Execution. After query optimization, the logical
plan will be translated into the actual physical implemen-
tation. Some of the steps in the plan will result in calling
the graph structure API In the above example query, the
GraphStep (corresponding to V()) and the VertexStep (cor-
responding to outE()) both need to call the graph structure
AP, since they need to access the basic vertex and edge
information in order to execute. However, the HasStep (cor-
responding to has(‘name’, ‘Alice’)) only needs to filter
vertices based on their property values which are already ob-
tained in the previous step, thus there is no need to access the
graph structure API. We call a step that requires access to the
graph structure API as a Graph-Structure-Accessing step, or
a GSA step for short. In Db2 Graph, each GSA step typically



results in one or more SQL queries to Db2. We can affect the
execution of these steps through our implementation of the
corresponding graph structure APL

The Graph Structure module contains our implementa-
tion of the Tinkerpop graph structure API The basic graph
structure API includes Graph, Vertex, Edge, VertexProperty,
and Property, as well as graph operations on them, such as
getting vertices/edges by ids and getting the adjacent ver-
tices/edges of a vertex/edge. We also extend the basic API to
carry out more sophisticated functionalities (e.g. predicate,
projection, and aggregate pushdown) in response to the op-
timized query plans resulted from applying the optimized
strategies from the Traversal Strategy module, as will be
discussed in Section 6.3. The Graph Structure module refers
to the overlay mapping in the Topology module to decide on
how to implement graph operations. The implementation
of the graph structure API affects the execution of all the
GSA steps in Db2 Graph, so we strive to optimize as much
as possible. In Section 6.3, we will highlight how we apply
the data-dependent optimizations at runtime by utilizing the
graph overlay topology. Finally, the Graph Structure mod-
ule utilizes the SQL Dialect module to translate the graph
operations into SQL queries.

The SQL Dialect module deals with everything related to
Db2. It generates all the SQL queries needed for implement-
ing graph operations. This module also keep tracks of these
SQL queries and finds out frequent query patterns. For ex-
ample, if the name column is frequently used (above a pre-set
threshold) in the predicates for querying the Patient table,
the SQL Dialect module will consider it as a frequent query
pattern. It then creates a set of pre-compiled SQL templates
for these frequent patterns and issues the corresponding
prepare statements in Db2 to avoid the SQL compilation
overhead at runtime. Based on these SQL templates, it also
suggests indexes (e.g. an index on the name column of the
Patient table) that would speed up the execution of the
translated SQL queries. This module can also provide hints
to the Db2 index advisor, which can look at the entire work-
load and advise indexes.

Let’s take the 3-step logical plan for the example query,
and illustrate how it is executed. Note again that the ac-
tual execution of this query is much more optimized in Db2
Graph. But, we stick with this naive version of the execution
for the simplicity of explanation. Only the GraphStep and
the VertexStep in this plan are GSA steps, thus only these
two actually call our graph structure API implementation.
Each API function implementation needs to decide 1) what
relational tables to query from, and 2) for each table, what
SQL query to submit. The GraphStep, corresponding to V(),
retrieves all vertices from the graph. So, only vertex tables
need to be queried. But there is no extra information to help
us narrow down a subset of the vertex tables. As a result,

for every vertex table, we need to submit a SQL query like
"SELECT * FROM VertexTable". The second HasStep, corre-
sponding to has(‘name’, ‘Alice’), is executed inside Db2
Graph (no SQL query is needed). And finally the VertexStep,
corresponding to outE(), needs to query every edge table
and submit a SQL query like "SELECT * FROM EdgeTable
where src in (id1, id2, ...)", where id1, id2 and so
on are the ids of the vertices from step 2.

Obviously, the above execution plan is very inefficient: the
first step returns all the vertices in the graph even though
the second step would filter out most of the vertices. In
the following two subsections, we describe the optimization
techniques employed in Db2 Graph to address the ineffi-
ciency. These optimization techniques aim at 1) eliminating
the unnecessary tables to query from, and 2) generating more
optimized SQL queries to reduce the query latency and the
returned results for each necessary table. The optimization
techniques can be grouped into two categories. The first cat-
egory is all about the optimized traversal strategies in the
Traversal Strategy module applied during query optimiza-
tion. These techniques are data-independent, i.e. they don’t
need to know anything about the underlying relational data
or how they are mapped to the property graph. In compari-
son, the techniques in the second category are all applied at
the runtime execution in the Graph Structure module. And
they are data-dependent, i.e. they need to access the graph
overlay mapping information in the Topology module.

6.2 Optimized Traversal Strategies

We first discuss the data-independent, optimized, traversal
strategies in the Traversal Strategy module applied during
query optimization. The traversal strategies mutate a query
plan whenever a pattern is matched, eventually generating
more optimized SQL queries. For all of these optimized strate-
gies, we start from a GSA step, since it results in SQL calls.
Predicate Pushdown with Filter Steps. When a GSA
step is followed by a sequence of filter steps, we can fold these
filter steps as extra predicates into the GSA step. Consider the

first two steps of the previous example query g. V() .has(‘name’,

‘Alice’). Now, the HasStep can be folded into the Graph-
Step. And the new GraphStep with the extra predicate can be
translated into one SQL query "SELECT * FROM VertexTable
WHERE name = ‘Alice’". We basically push down all the
filter steps into the “where" clause of the SQL statement for
the GSA step (the filter steps are all removed in the optimized
plan), which results in a significant reduction of the SQL run-
time and the results returned from the database. This is, in
some sense, very similar to query push down in the setting
of federated databases [39].

Projection Pushdown with Properties Steps. Graph
traversals often fetch some particular vertex or edge prop-
erties, for example g.V().values(‘name’, ‘address’),



which fetches the values of the name and address proper-
ties. When a GSA step is followed by such a Properties Step,
we can use the provided set of property names to help re-
duce the projected columns for the GSA step. In this example,
the GraphStep can be translated into "SELECT id, label,
name, address FROM VertexTable" instead of "SELECT *
FROM VertexTable".

Aggregate Pushdown with Aggregation Steps. Grem-
lin supports a number of aggregate functions, such as count,
sum, mean, min, and max. When such an aggregate function
follows a GSA step, we can push down the aggregate func-
tion into the SQL statement of the GSA step. For the example
query g.V() .count(), instead of retrieving all the vertices
from the database (with "SELECT * FROM VertexTable")
and then computing the count, we can combine the two
steps and submit a SQL query "SELECT COUNT(*) FROM

VertexTable". This obviously significantly reduces the amount

of data transferred from Db2 to Db2 Graph and dramatically
improves the query performance.

GraphStep::VertexStep Mutation. This optimized strat-
egy applies when a GraphStep that retrieves vertices is fol-

lowed by a VertexStep. For the example query g.V(ids) .outE(),

which retrieves all the outgoing edges of vertices with id in
the set of ids, the default Gremlin strategy would turn it into
two SQL queries: "SELECT * FROM VertexTable WHERE id
in (ids)" followed by "SELECT * FROM EdgeTable WHERE
src_v in (ids)".Itis obvious that the first SQL query is
a total waste. The second SQL query alone can provide the
needed results for the graph query, as the vertex ids are also
stored in the edge tables as source vertex ids.

To eliminate the unnecessary scan on the vertex table (cor-
responding to g.V()), we mutate the GraphStep::VertexStep
steps into a new GraphStep that retrieves edges, and pass
the ids as a predicate on the edges into the GraphStep. And
if the original VertexStep retrieves vertices (e.g. in the case
of g.V(ids).out()), we also add an EdgeVertexStep (cor-
responding to inV() in this case) that retrieves the desired
vertices after the new GraphStep.

All the above strategies can be combined together during
query optimization. For the example query g.V(ids).outE()
.has(“metIn’, ‘US’).count(),the GraphStep::VertexStep
mutation will be applied first, followed by the predicate push-
down, and finally aggregate pushdown will be applied. So,
the end result is one optimized SQL query "SELECT COUNT (%)

FROM EdgeTable WHERE src_v in (ids) AND metIn=‘US’".

6.3 Data-Dependent Optimizations

We now discuss the data-dependent runtime optimizations
employed in the Graph Structure module of Db2 Graph. In
Db2 Graph, every vertex/edge in the property graph comes
from a particular table. We record this information in the ba-
sic vertex and edge data structures so that we can access this

information at runtime. Since we allow a property graph to
overlay on top of multiple vertex and edge tables, by default,
when we query vertices/edges from the graph, we need to
query all the vertex/edge tables to ensure the correctness of
the query. However, as we will show in this subsection, we
can utilize the belonging table of a vertex/edge along with
the graph overlay topology from the Topology module to
eliminate, as much as possible, the unnecessary tables that
we need to query from at runtime.

Using Source/Destination Vertex Tables. The source/des-
tination vertex table definition (src_v_table/dst_v_table
in Section 5) for an edge table offers a most straightforward
way to eliminate unnecessary tables. Suppose that we need
to query the adjacent outgoing vertex of a given edge e (i.e.
e.outV()). Without any optimization, this query will re-
sult in a SQL query "SELECT * FROM VertexTable WHERE
src_v = e.src_v" for every single vertex table. However,
if the src_v_table is defined for ¢’s edge table in the graph
overlay, then we just need to query exactly one table. This is
a significant improvement, especially when the graph maps
to a large number of vertex tables.

When A Vertex Table Is Also An Edge Table. It is
fairly common to have a relational table to serve as both
a vertex table and an edge table in the graph overlay, as the
table may contain both information about objects and their
relationships to other objects (e.g. in the case of a fact table in
a star schema). This special case sometimes provides a great
optimization opportunity to avoid unnecessary queries all
together. Let’s again take e.outV() (querying the adjacent
outgoing vertex of edge e) as an example. If not only the
src_v_table is defined and but also it is the same as €’s
edge table, then the queried vertex and the edge e refer to
exactly the same row in the common table. If, additionally,
all the columns used to define the properties and required
fields for the vertex are subsumed by those for the edge, then
we can simply construct the vertex from the edge itself, thus
avoiding a SQL query all together.

Using Property Names in Pushdown Information. Re-
call that we add a number of optimized traversal strategies
in the Traversal Strategy module to pushdown predicates,
projections, and aggregates into the GSA steps. We also ex-
tend the graph structure API accordinly to take in these extra
pushdown information for more efficient implementation.
It turns out that these pushdown information not only can
help generate more optimized SQL queries (by adding predi-
cates, projections, and aggregates in the SQL), but also can
help eliminate unnecessary query tables. Whenever a push-
down predicate or projection is present, e.g. has(‘name’,
‘Alice’) or values(‘name’), the specified property, e.g.
‘name’, has to exist for the query to return a result. Since
we have all the property information for each vertex/edge
table defined in our overlay configuration, we easily know



whether the specified property exists or not in a vertex/edge
table. Then, only the tables having the required property
need to be queried.

Using Label Values. Label is a very special property in
a property graph, thus a very common operation in Gremlin
is to retrieve vertices/edges by label(s), e.g.

g.V().hasLabel (‘patient’) andv.outE(‘hasDisease’).

Naively, this would result in querying through all the ver-
tex/edge tables with a predicate on the given label(s). But,
our graph overlay configuration allows a vertex/edge table
to have a fixed label (i.e. fixed_label is true) for all the
vertices/edges in it. When this happens, we can use the spec-
ified label(s) to narrow down a subset of vertex/edge tables to
query from. More specifically, any table that has a fixed label
but not matched with the query label(s) can be eliminated
from the query. Note that the implementation still has to
search all the tables without fixed labels to make sure it is
not missing any results. This optimization provides a huge
performance improvement.

Using Prefixed Id Values. Another very basic operation
in the graph structure API is looking up vertices/edges by
ids. When a given id is a prefixed id (unique key prefixed
with a unique table identifier), e.g. ‘patient’::1, we can
use the unique table identifier to pin down the exact table to
search from (in this example, the Patient table), instead of
blindly querying through all the tables. In addition, when the
id field is the concatenation of multiple table columns (e.g.
‘TableName’::c1::c2), Db2 Graph extracts the individual
column values from an id value and forms conjunctive predi-
cates (e.g. c1=c1_value and c2=c2_value) in SQL queries.

Using Implicit Edge Id Values. For edge ids defined
with the implicit src_v::label::dst_v combination, when fixed
labels are specified for edge tables, we can also utilize the
label encoded in the id field to narrow down the tables to
search from for looking up an edge by its id, similar to how
we eliminate tables using label values. Similar to the prefixed
id values, Db2 Graph also breaks apart the implicit edge id
values to form conjunctive predicates in SQL queries.

7 REAL WORLD USAGE

Db2 Graph has been used in a number of real customer en-
gagements. In finance, an example application is mule fraud
detection, where graph queries are used to detect how a set
of fraudsters are connected to a set of beneficiaries through
a sequence of mule accounts. The dataset for this applica-
tion is bank transaction data, which are updated frequently
through the bank’s operational functions and also used by
existing SQL analytical applications. The timeliness of the
fraud detection requires the graph queries to access the latest
transaction data. As a result, importing all the transaction
data to a standalone graph database would be expensive and
hard to satisfy the timeliness requirement.

In health care, Db2 Graph has been used for patient case
study on a dataset that contains patient EMR records, hos-
pital discharges, and health insurance information. This ap-
plication views patients, hospital discharges, diagnoses, lab
results, medical procedures, drugs, and insurance enrollment
information etc. all as vertices of a graph. The queries tra-
verse through the graph to find out how a patient is treated
in an inpatient service (e.g. what tests have been done, what
procedures have been performed, what diagnoses have been
made, and what drugs have been given), as well as how the
costs are covered by insurance. These are path queries start-
ing from a single vertex. There are already a large number
of existing applications reading and writing this dataset, and
the graph queries need to work on the latest data. In addition,
the demo in [42] showed another detailed scenario for health
insurance claim analysis using Db2 Graph. In this applica-
tion, SQL and graph queries need to work synergistically,
hence using a standalone graph database would not be ideal.

In law enforcement, Db2 Graph has been used to query a
police department dataset that contains information about
persons (suspects, victims, or witnesses), organizations (legit-
imate organizations or gangs), arrests, warrants, complaints,
vehicles, locations, emails, and phones. The application views
all these entities as vertices and conducts case studies, such as
finding the phone numbers and addresses of the suspects in
an arrest, and figuring out the criminal organizations that all
suspects of an arrest belong to. Again the workload consists
of path queries starting from a single vertex. The dataset is
updated in real time, thus using a standalone graph database
would be hard to keep data up-to-date for graph queries.

So far, the largest real graph that Db2 Graph has worked
on, contains about 4 billion vertices and 6 billion edges with
roughly half a terabyte of data. The graph workload consists
of Gremlin queries that traverse from some vertices, satisfy-
ing certain conditions, up to 4 hops away, with optional pred-
icates on the traversal paths. The observed average query
response time using Db2 Graph is sub 100 milliseconds.

8 EVALUATION

In the following, we report experimental results of Db2
Graph on a synthetic benchmark. Recall that we focus on the
scenarios where graph data already exist in the relational
database, and the design goal of Db2 Graph is not to be the
fastest in graph-only queries. Nevertheless, we still compare
the graph query performance of Db2 Graph against two state-
of-the-art graph-only databases: GDB-X, a commercial high-
performance native graph database (the name is anonymized
due to the sensitivity of reporting its performance numbers),
and JanusGraph [10], a popular open-source graph database
(with Berkeley DB [13] as the backend store).

We used the Linkbench [11] graph benchmark for perfor-
mance evaluation. Here, we only focus on the query only



Table 1: LinkBench Queries

LinkBench Query
getNode(id, 1bl)

Gremlin

gV (id).hasLabel(lbl)

countLinks(id1,lbl) | g.V(id1).outE(lbl).count()
getLink(id1,lbLid2) | g.V(id1).outE(lbl).filter(outV().id() == id2)
getLinkList(id1,lbl) | g.V(id1).outE(Ibl)

Table 2: Linkbench Datasets

Linkbench | Num Of | Num Of | Avg Max | CSV
Dataset | Vertices | Edges | Degree | Degree | File
10M 10M 43M 43 961,970 | 4.3G
100M 100M 419M 4.2 962,000 | 42G

workloads in LinkBench. Table 1 lists the 4 types of graph
queries in LinkBench. We understand that the Linkbench
queries are not complex graph queries. However, just as ad-
vocated by the experimental work in [34], we also observed
that a microbenchmark with simpler queries provides a better
understanding of the pros and cons of each graph database,
compared to a macrobenchmark.

For all the experiments, we used a Ubuntu server with 32
CPU cores and 256GB memory. For fair comparison, we used
the same Gremlin Server configuration and gave the same
64GB JVM to all three graph databases, as well as building
all the indexes necessary for each system to get good per-
formance. Table 2 shows the Linkbench datasets we used
in our experiments. For the two datasets, each vertex has 3
properties and each edge has 4 properties. There are 10 types
of vertices and also 10 types of edges.

Effect of Optimized Traversal Strategies. We first eval-
uate the effect of the optimized traversal strategies in Sec-
tion 6.2 on the overall performance of Db2 Graph. Figure 4
compares the average latency of the Linkbench queries on
the Linkbench-10M dataset with all the optimized strategies
turned on and off, respectively. Note that the data-dependent
runtime optimizations in Section 6.3 are still applied in both
situations. As can be seen, all of the queries significantly
benefit from the optimized traversal strategies, with 2.8X
to 3.3X speed up in performance. In particular, the getNode
query mainly benefits from the predicate pushdown strat-
egy; the remaining three queries all benefit from the Graph-
Step::VertexStep mutation strategy; the countLink query ad-
ditionally benefits from the aggregate pushdown strategy;
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Figure 4: Db2 Graph with vs without optimized traver-
sal strategies: latency on Linkbench-10M dataset

and the getLink query additionally benefits from the predi-
cate pushdown strategy.

Graph Loading Time. Since we assume that graph data
have already existed in the relational database, GDB-X and
JanusGraph require graph data to be reloaded into their own
graph databases before they can be queried as a graph. This
loading time includes exporting the data out of the relatonal
database, loading the data as a graph into GDB-X or Janus-
Graph, and opening the graph to be queried. Table 3 lists
the breakdown of the loading times. As a reference, we also
include the numbers for Db2 Graph in the table. Db2 Graph
would require no time for loading relational data as a graph,
since it supports directly querying relational data as a graph.
The only overhead is the graph opening time, which is a
couple of seconds. As the table shows, even exporting data
out of the relational database takes from 4 minutes to half
an hour. Then loading the data into the graph database takes
42 minutes to 8 hours for GDB-X! Opening the graph takes
another 14 to 15 seconds in GDB-X. This slow open time is
caused by the aggressive prefetching and caching strategies
adopted in GDB-X. Another thing worth noting is that the
disk space used to store the graph data in GDB-X is 6-7X
of the original relational tables, on which Db2 Graph can
directly operate. For JanusGraph, loading the graph is even
more painful (13.5 hours for LinkBench-100M), and the disk
usage is also on par with GDB-X.

In summary, the results show that it is simply infeasible to
use GDB-X or JanusGraph to interactively query graph data
already stored in a relational database at runtime. The only
way for them to carry out graph analysis on the existing
relational data is to pre-load the data to the graph database
ahead of time. Of course, this also raises consistency issues
on the two copies of data.

Graph Query Performance. Finally, we compare the
query performance of Db2 Graph against GDB-X and Janus-
Graph. All graph databases were running in server mode
and responding to requests from clients at localhost.

Figure 5 demonstrates the latency of LinkBench queries.
JanusGraph is always the slowest (up to 2.7X slower than
Db2 Graph). On the smaller Linkbench-10M dataset, GDB-X
presents the best latency for almost all queries, although
Db2 Graph is slightly better for the getNode query. This is
not a surprise, since GDB-X is a native graph database. Its
optimized graph storage layout and the aggressive caching
mechanism really help lower the query latency. This smaller
dataset can fit entirely in the in-memory cache. Nevertheless,
the difference between Db2 Graph and GDB-X is still within
1.5X. However, when we move to the much larger Linkbench-
100M dataset, the story completely changed: Db2 Graph
even beats GDB-X up to 1.7X. This is because, for GDB-X,
the graph data that occupy 327GB disk space, cannot be
cached entirely in memory anymore. In comparison, the



Table 3: Graph loading time for different graph databases

Db2 Graph Export

Linkbench | Disk  Open From Disk
Graph DB Usage

Dataset Usage

GDB-X JanusGraph
Load Open | Disk Load Open
Data  Graph | Usage Data  Graph

10M 4.6GB
100M 45.8GB 2.1 sec

32 min

1.4 sec 5 min 28GB
327GB

42min 14sec | 29GB 65min 15 sec
8 hr 15sec | 326GB  13.5hr 17 sec
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Figure 5: Latency of Linkbench Queries

entire 45.8GB relational data can sit comfortably in Db2’s
buffer pool.
We compare the throughput of the three systems in Fig-

ure 6, by having 50 clients simultaneously submitting Linkbench

queries. Db2 Graph is the clear winner in all cases, beating
GDB-X up to 1.6X and JanusGraph up to 4.2X. This is because
the underlying Db2 engine is extremely good at handling con-
current queries. Even though GDB-X might run each query
faster on the smaller Linkbench-10M dataset, it cannot keep
up with the large amount of concurrency.

Overall, in terms of query latency, GDB-X’s sweet spot
is when the graph data are relatively small and can fit com-
fortably in its in-memory cache. But even for this case, Db2
Graph is within a very reasonable range of GDB-X. As graph
data grow bigger, Db2 Graph starts to excel, due to the ag-
gressive optimization strategies applied in Db2 Graph and,
perhaps more importantly, the robust performance of the un-
derlying Db2 engine. When talking about query throughput,
Db2 Graph clearly outperforms the competitors, due to Db2’s
superiority in handling concurrent queries. JanusGraph is
always the worst in terms of both latency and throughput.

Again, all the experiments in this subsection are for graph-
only queries. When considering graph queries as a part of
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Figure 6: Throughputs of Linkbench Queries

a more complex analytics workload, the standalone GDB-X
and JanusGraph graph databases will have to pay for other
more expensive overhead such as data transfer and trans-
formation. In contrast, the advantage of the in-DBMS graph
querying approach adopted by Db2 Graph becomes more
prominent in these real application scenarios.

9 CONCLUSION

This paper introduced IBM Db2 Graph, a layer inside Db2
that supports Gremlin graph queries. Db2 Graph took an in-
DBMS graph query approach, making graph queries synergis-
tic with SQL analytics. By employing a novel graph overlay
approach, it flexibly retrofits graph queries to existing rela-
tional data. To achieve query efficiency, Db2 Graph adopted
various compile-time and runtime optimization techniques.
Through empirical studies and real customer experiences, we
showed that Db2 Graph achieves very competitive and some-
times even better performance compared to existing graph
databases. Furthermore, in the context of real application
scenarios with integrated SQL, graph, and other analytics,
Db2 Graph demonstrated more prominent advantage over
existing approaches.
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