Event-based Social Networks: Linking the Online and Offline Social Worlds

Xingjie Liu^{*}, Qi He[#], **Yuanyuan Tian**[#], Wang-Chien Lee^{*}, John McPherson[#], Jiawei Han⁺ The Pensalvania State University^{*}, IBM Almaden Research Center[#], University of Illinois at Urbana-Champaign⁺

Event-based Social Services

• Examples: Me

- Create social events, join events through RSVP
- Communicate with each other online (like in Facebook and Twitter)
- Linking the *online* and *offline* social worlds
 - Online virtual world: exchange thoughts and share experiences
 - Offline physical world: face-to-face social interactions in events
 - *when* and *where*, *who* and *who* did *what* together
- Advantages over conventional social networks
 - Stronger social ties
 - Participating in a physical activity together >> befriends online
 - Stronger intents
 - Participating in a ski event >> talking about skiing online

Event-base Social Network (EBSN)

- EBSN definition: G=<U, A^{on}, A^{off}>
 - U: users
 - A^{on}: online social interactions
 - A^{off}: offline social interactions

- G^{on}=<U, A^{on}> forms an *online* social network
- G^{off}=<U, A^{off}> forms an *offline* social network
- Comparison to Location-Based Social Network (LBSN), e.g. Foursquare and Gowalla
 - Similar online virtual world
 - But offline part of LBSN only records *individual* place checkin behaviors
- Crawled Datasets
 - Meetup (EBSN): 5.15 million users, 5.18 million events, 42.7 million RSVPs, 97.6 thousand groups, 10.7 million memberships
 - Gowalla (LBSN): 566 thousand users, 36.8 million checkins, 2.84 million locations, 2.43 million links

Event-based Social Network

Questions about EBSNs

- What are the unique features of an EBSN?
 - Online + offline
 - Are they correlated?
- How to detect the communities in an EBSN?
 - Online and offline interactions together define communities
 - Are the communities more cohesive than in other SNs?
- How does information flow inside an EBSN?
 - Information can flow online and offline
 - e.g. event recommendation
 - Event has very short life time cold start problem

Properties of Meetup EBSN (1/2)

• Events show regular temporal and spatial patterns

- Correlation between online and offline networks
 - Degree correlations: 0.37, cluster coefficient correlation: 0.39

Properties of Meetup EBSN (2/2)

- Strong locality of social events and interactions
 - 81.93% events of a user are within 10 miles of his/her home * location
 - 84.61% of offline friends live within 10 miles to each other

* By discretizing the world into 25km X 25km cells, a user's home location is identified as the averages position in the most frequent cell.

Community Detection in EBSNs

- Communities are defined by both online and offline interactions.
- Approach 1: Linear Combination

- $A = \gamma * A^{\text{on}} + (1 - \gamma) * A^{\text{off}}$, then apply Fiedler method

- Approach 2: Generalized SVD
 - $A^{\text{on}} = \mu \Sigma_1 Y^T, \ A^{\text{off}} = Y \Sigma_2 \nu^T$
 - 2nd to m-th smallest singular vectors in Y as a m-1 dimensional vector for a K-means
- Approach 3: Extended Fiedler Method
 - Objective function: (extension of normalized cut)

$$\min \alpha \frac{\mathbf{y}^T (D^{\text{on}} - A^{\text{on}}) \mathbf{y}}{\mathbf{y}^T D^{\text{on}} \mathbf{y}} + (1 - \alpha) \frac{\mathbf{y}^T (D^{\text{off}} - A^{\text{off}}) \mathbf{y}}{\mathbf{y}^T D^{\text{off}} \mathbf{y}}$$

subject to $\mathbf{y}^T D^{\text{on}} \mathbf{1} = 0, \mathbf{y}^T D^{\text{off}} \mathbf{1} = 0, \mathbf{y} \neq 0$

- A heuristic algorithm (HeteroClu)
 - A bottom-up loose clustering based on linear combination
 - A top-down recursive binary-cut

Cohesiveness of Communities

- Cohesiveness: how similar the users in a community are compared to other communities
 - Utilize user tags (specify user interests)
 - Measure: Davies-Bouldin index (smaller value is better)

- HeteroClu generates much better communities.
- Communities in Meetup EBSN are more cohesive than in Gowalla LBSN.

Information Flow in EBSNs

- Application: Event Recommendation
 - For a given event, recommend users to participate
 - Event has very short life time
 - Given creation time $t_{\rm c},$ start time $t_{\rm s},$ recommendation is only valid for $t_{\rm c}{<}t_{\rm p}{<}t_{\rm s}.$
 - RSVPs between t_c and t_p , are training examples.
 - Existing supervised learning algorithms perform poorly due to the cold start problem.
 - Study event recommendation using information diffusion approaches

Information Flow Patterns

• Typical information diffusion in an EBSN

- Community-based diffusion
 - Information tends to, but not restricted to flow in its own community

Event Recommendation on Homogenous Networks

- Baselines:
 - CF: collaborative filtering
 - RWR: random walk with restart for different restart probabilities
- Divide data 8:2 and recommend valid events

Community-based diffusion works better than CF or RWR for event recommendation

Diffusion on EBSNs

- Community-based parallel diffusion model produces the best recall
 - Even satisfactory with extreme cold start.

Future Work

- More EBSN examples
- Generative model for EBSNs
- Better clustering algorithms on EBSNs
- More applications on EBSNs

- Special Thanks
 - Prof. Jon Kleinberg for providing us a comprehensive list of related works
- Datasets to download
 - http://www.largenetwork.org/ebsn

Thank You

- Questions?
- Suggestions?