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ABSTRACT
We present results of microarchitectural analysis for LDBC SNB BI
queries on a relational database engine. We find underutilization
of multicore CPUs, inefficient instruction execution, data access
overheads at the on-chip cache hierarchy, data TLB overheads, and
overall low (but short-term high) memory bandwidth utilization.
Using huge pages increased query performance by up to 65% and
workload performance by 23%.
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1 INTRODUCTION
The high demand for graph technologies in the market has been
fueled by the rapid growth of network and graph data, resulting
in the emergence of a plethora of graph databases [44]. Besides
native graph databases, like Neo4j [31] and TigerGraph [11], which
are built from scratch just for handling graph workloads, many
argue that relational database systems (RDBMSs) can well support
graph workloads [12, 48]. In fact, many graph database solutions on
market today, including Microsoft SQL Graph [29], Oracle Spatial
and Graph [33], and IBM Db2 Graph [45], provide graph query
capabilities on top of an existing relational database. There are also
many research endeavors in efficiently supporting graph queries on
top of RDBMSs [13, 20, 43], like VoltDB [10], DuckDB [34], etc. The
counter argument from the native graph database camp is: while it
is technically possible to run graph queries on an RDBMS, it may
not be the most efficient or effective way to handle graph data.

As discussed in [44], settling the argument of native vs RDBMS-
based graph databases is at least challenging if not impossible. Be-
yond performance, many factors, such as the composition of graph
and non-graph workloads in the application, the data transfer and
transformation cost in the end-to-end data pipelines, and the actual
design and implementation of the system, also contribute to the
choice of a particular graph database solution for an end user. Nev-
ertheless, it is still interesting and important to understand in a per-
formance perspective how efficient graph queries are executed in a
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relational database. There has been a number of experimental stud-
ies benchmarking various graph databases [21, 23, 26], including
some RDBMS-based graph databases. All of these studies were per-
formed at a high level, measuring latency and throughput of graph
queries and operations. The results from different studies often gen-
erated different conclusions in terms of which graph databases are
more performing. None of them reason about how graph queries
are effectively using the hardware platform or inefficiencies thereof
that are limiting performance. To answer this question, we believe
that it is necessary to understand the performance of a graph data-
base at a microarchitectural level, i.e. hardware resource utilization
and bottlenecks when executing graph queries, being inspired by
prior studies [5, 36, 38–40] for more conventional workloads.

As far as we know, this work is the first attempt to analyze the
performance of executing graph queries in a relational database at
the microarchitectural level. Since prior work has demonstrated
DuckDB as a promising RDBMS for supporting graph queries [20,
43], we pick DuckDB to study in this paper. For query workload,
we use the widely adopted the LDBC Social Network Benchmark
(LDBC-SNB) [6]. In particular, we focus on the complex BI queries,
which access a significant portion of the graph and are designed
with a variety of performance choke points [6, 41, 42].
Our microarchitectural analysis reveals the following insights.
• Processor core pipelines are significantly underutilized waiting
to fetch and issue instructions and for data accesses to complete.
Core utilizations and/or instruction execution efficiencies (in-
structions per cycle) are low.

• Cache-conscious and TLB-conscious query processing are im-
portant for higher performance. Huge pages can improve query
performance by reducing TLB misses and miss overheads.

• While queries have a moderate average bandwidth requirement,
short-term peak bandwidth demand can be much higher. Band-
width demands are likely to increase as future optimizations
mitigate pipeline inefficiencies and increase core utilizations.

2 EXPERIMENTAL SETUP
Systems and tools: We use a dual-socket Intel Gold 6226R (Cascade
Lake) server with a total of 32 physical (64 logical) cores and 750GB
memory, and running Ubuntu 20.04.4 LTS. We generate LDBC SNB
BI datasets and parameters [2] for scale factors (SFs) 10 and 100
and create in-memory databases with DuckDB [34] v0.7.1. We use
Linux perf, Intel Vtune Profiler [15] v2023.1.0, Performance Counter
Monitor [17], and Memory Latency Checker [16] v3.10 to gather
microarchitectural statistics, usage, and performance metrics.
Queries: We use query implementations for Umbra [1] as a starting
point, then make some changes, e.g., to account for the undirected
(bi-directional) nature of the Friends relationship from the Per-
son_knows_Person data, and rewrite some path queries. We run
each query with 30 settings of parameter values.
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Figure 1: Average query runtimes per setting of parameter values. Query numbers on x-axis.

Server and client processes: We run DuckDB inside a Pyro5 [3]
server daemon process, which runs the query requested by a light-
weight client. To minimize communication overhead, the server
runs the query sequentially for 30 times, once for each parameter
setting, before signaling completion to the client. Each query run
is multithreaded, but only one query executes at a time. We do a
system-wide collection of microarchitectural performance metrics.
Precomputations: Inspired by the schema used for Umbra, we
compute and materialize the results of several common compu-
tations. This assumes that identification and materialization of
commonly-used computations is feasible. One of the main pre-
computations identifies the root message and associated properties
of a Comment (a Comment can be a reply of another Comment or
Post). We implement this with a recursive CTE. Other precomputa-
tions include merging information for some tables. The precompu-
tations take around 12 secs for SF=10 and 2 mins for SF=100.

3 ANALYSIS AND FINDINGS
Runtime and peak residentmemory: Figure 1 shows the average
query run time per parameter setting excluding precompute time.
Some queries have variants (a and b) that differ only in the proper-
ties of parameter values. The runtimes span a wide range for each
SF. The longest-running queries are Q10 (with high-cardinality
group by, joins, correlated subqueries, path computations), Q13
(with high-cardinality group by, joins, correlated subqueries), Q14
(with low-cardinality group by, joins, correlated subqueries, rank-
ing), Q15, Q17 (with joins, negative patterns), Q19, and Q20.

Q15, Q19, and Q20 compute weighted shortest paths. Using re-
cursive CTEs was too computationally expensive for Q15 and Q19,
so we use repeated joins to compute shortest paths but limit1 the
number of hops to 6 and 3. We use recursive CTE for Q20, limited1
to 4-hop paths. The limits are fine for this particular dataset, except
for Q15b that failed to find the shortest path for 2 of 30 param-
eter settings at SF=10 and 3 of 30 settings at SF=100 and would
need larger hop-count limits (therefore, more runtime and memory)
that may not be feasible to statically determine. Thus, optimizing
path queries [43], in particular, efficient computations of weighted
shortest paths, is an important optimization for this workload.

The peak resident memory size was 54 GB for SF=10 and 248 GB
for SF=100. The large memory requirement relative to the SF can
make it challenging to use accelerators with small device memories
in a naive way for such workloads.
Core utilization and execution efficiency: Figure 2 shows the
average logical core utilization and IPC (instructions per cycle)
for each query over its run time. The former indicates occupancy

1Thus, Q15, Q19, Q20 are not fully implemented since the spec does not specify limits.

of logical cores while the latter indicates instruction execution
efficiency. We see higher utilization for SF=100 compared to SF=10,
likely due to each thread having more data to process and relatively
smaller query startup and completion overheads. However, even
at SF=100, some queries have low utilization, e.g., Q7 (with low-
cardinality aggregates, overlap between outer and inner queries,
negative patterns), Q11 (triangle counting), Q6, Q13, Q17, Q18. IPC
for most queries is < 1, which is considered low (thus, inefficient).
The results suggest that there is room for future query processing
optimizations to improve both the work distribution to parallel
threads and the execution efficiency of each thread.
Pipeline Utilization: Figure 3 shows the breakdown of processor
pipeline slots usage, a characterization that is used in the top-down
analysis technique [19, 46], into the following categories.
• Retiring: Pipeline slots occupied due to retiring (completion) of
instructions. This represents useful work.

• Frontend Bound: Pipeline slots unutilized due to inadequate
supply of instructions to issue from the fetch unit, e.g., due to
instruction cache misses, micro-op cache misses, etc.

• Bad Speculation: Pipeline slots wasted due to incorrect specu-
lative execution, e.g., due to incorrect branch predictions.

• Memory Bound: Pipeline slots blocked waiting for memory
operations to complete, e.g., stalled due to data cache miss.

• Core Bound: Pipeline slots blocked waiting for core functional
units to complete operations.

For higher performance, we expect to see a higher percentage for the
Retiring category and lower percentages for the others. However,
we observe that across queries, the retiring percentage is not very
high with the medians being 31% for SF=10 and 25% for SF=100.
The lowest value (8%) occurs for Q20b at SF=100. The Frontend and
Memory Bound categories together constitute the major portion of
pipeline slots not utilized for useful work. Losses due to incorrect
speculation are quite small. Core functional units are not a big
bottleneck either. Q7, SF=10, is the most core bound (19%). Overall,
many pipeline slots are starved or blocked waiting for instruction
fetch and issue or for memory operations to complete, while core
computational capacity is not a large bottleneck. We speculate
that other hardware backends with somewhat weaker cores but
more efficient instruction delivery and data access could be more
performant for such workloads.
Load stalls: We now look deeper into the memory bound category.
Figure 4 shows the breakdown of cycles with stalls due to mem-
ory load operations. Note that each cycle corresponds to multiple
pipeline slots, equal to the pipeline width [14], so the distribution
of events across pipeline slots and cycles are not the same. L1-, L2-,
L3-, and DRAM-Bound categories indicate stalls due to loads that
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Figure 2: Average logical core utilization and Instructions Per Cycle (IPC). SF=10 (upper), 100 (lower). Query numbers on x-axis.
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Figure 3: Breakdown of pipeline slots usage. SF=10 (upper), 100 (lower). Query numbers on x-axis.
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Figure 4: Breakdown of cycles with load (memory read) stalls. SF=10 (upper), 100 (lower). Query numbers on x-axis.

are serviced at that level of the memory hierarchy [14]. L3-Bound
also includes inter-core coherence stalls [14]. While DRAM-Bound
stalls are not surprising, we also see a significant fraction of cycles
with on-chip cache-bound accesses, including at the L1 (that can
be caused by inter-instruction data dependencies [14]). Optimizing

the on-chip cache hierarchy and having cache-conscious query
processing techniques [7, 8, 27, 28, 35, 37] remain important for
query performance, as well as for getting full benefits from potential
reductions in off-chip bottlenecks, e.g., with the increased DRAM
bandwidths available in next-generation processors [18].
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Figure 5: Avg. read, write and peak read (100ms windows) memory bandwidths. SF=10 (upper), 100 (lower). Query nos. on x-axis.
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Figure 6: Query speedup with THP. Speedup > 1 implies performance gain. Query numbers on x-axis.

DRAM access performance: Figure 5 shows the DRAM read (in-
cludes prefetch) and write2 bandwidths averaged over the query
run time, and peak of average read bandwidths (since usually, reads
are more on the critical path) averaged over 100ms time inter-
vals. Although average end-to-end query bandwidths are low, sev-
eral queries, e.g., Q4, Q13, Q14, Q17, Q20 etc. have much larger
peak bandwidths that the memory subsystem should support to
avoid potential query slowdowns. Q18 (with negative patterns,
undirected cyclic subgraph), Q20 have a relatively smaller average
bandwidth demand although being memory bound, indicating la-
tency bottlenecks in data movement across the memory hierarchy.
For most queries, cycles having stalls due to DRAM latency are
larger than those due to DRAM bandwidth limits on this server.
Software prefetches, initiated during intervals when bandwidth is
available, might help to mitigate latency stalls [9].
NUMA bottlenecks: The per-socket peak DRAM bandwidth on
this server is ∼100 GB/sec, but remote DRAM accesses (to the local
DRAM at the other socket) see a peak bandwidth of ∼34 GB/sec
and latency increase of at least 50%. We see 33–75% (median: 54%)
remote DRAM accesses across queries, suggesting room for data
placement and task scheduling optimizations [24, 25].
TLB misses and speedup with huge pages: We observe signif-
icant DTLB load misses that cause page walks. The highest miss
rate for such misses occurs for Q15a with an MPKI (misses per Kilo
instruction) of 8.7 at SF=10 and 9.3 at SF=100, while the workload-
level (all queries) MPKI is 3.9 for SF=10 and 5.3 for SF=100. To reduce
these misses and associated overheads, we investigate the effect of

2The queries do not modify input data, but their execution creates intermediate results
that are written to the cache hierarchy, and when evicted cause writes to memory.

using huge pages with the Transparent Huge Page (THP) capability
in Linux [4]. THP tries to automatically allocate 2MB pages instead
of the default 4KB pages. With THP, we see MPKI reductions, e.g.,
MPKI for Q15a reduced by 76.3% for SF=10 and 35.9% for SF=100,
and at the workload-level it reduced by 47% and by 18.7% respec-
tively. As we show in Figure 6, we get significant speedups for
several queries, e.g., at SF=100, Q6: 56.8%, Q7: 64.9%, Q8a: 50.6%,
Q8b: 61.7%, Q11: 40.7%, Q14a: 27%, Q14b: 27.3%, Q15a: 31.8%, Q15b:
39.9%, etc. Q20b, SF=100, and a few other queries did not speed up
indicating the presence of additional bottlenecks. The speedup for
the overall workload (sum of runtimes for all queries) was 21.3%
for SF=10 and 22.7% for SF=100. Considering differences in guid-
ance regarding THP for different database systems [30, 32, 47], we
suggest caution in using THP in general, but urge further explo-
ration of judiciously using huge pages and TLB-conscious query
processing [8, 22, 27] to improve performance.

4 CONCLUSION
Microarchitectural analysis of LDBC SNB BI queries on a mod-
ern server revealed resource underutilization and inefficiencies in
data access and instruction execution. Huge pages can improve
performance significantly, and more opportunities remain for co-
optimizing the microarchitecture and query processor for further
gains. We believe that microarchitectural analyses can complement
algorithmic and software analyses to support queries on RDBMSs
more efficiently, in helping to select suitable hardware backends,
and by providing insights for using them effectively.
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