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ABSTRACT
The MapReduce framework is increasingly being used to
analyze large volumes of data. One important type of data
analysis done with MapReduce is log processing, in which
a click-stream or an event log is filtered, aggregated, or
mined for patterns. As part of this analysis, the log of-
ten needs to be joined with reference data such as informa-
tion about users. Although there have been many stud-
ies examining join algorithms in parallel and distributed
DBMSs, the MapReduce framework is cumbersome for joins.
MapReduce programmers often use simple but inefficient al-
gorithms to perform joins. In this paper, we describe cru-
cial implementation details of a number of well-known join
strategies in MapReduce, and present a comprehensive ex-
perimental comparison of these join techniques on a 100-
node Hadoop cluster. Our results provide insights that are
unique to the MapReduce platform and offer guidance on
when to use a particular join algorithm on this new plat-
form.

Categories and Subject Descriptors
H.2.4. [Systems]: Distributed Databases; H.3.4. [Systems
and software]: Distributed Systems

General Terms
Performance, Experimentation

Keywords
MapReduce, Hadoop, Join processing, Analytics

1. INTRODUCTION
Since its introduction just a few years ago, the MapRe-

duce framework [16] has become extremely popular for ana-
lyzing large datasets in cluster environments. The success of
MapReduce stems from hiding the details of parallelization,
fault tolerance, and load balancing in a simple program-
ming framework. Despite its popularity, some have argued
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that MapReduce is a step backwards and ignores many of
the valuable lessons learned in parallel RDBMSs over the
last 30 years [18, 25]. Among other things, the critics of
MapReduce like to point out its lack of a schema, lack of a
declarative query language, and lack of indexes.

We agree with all of these criticisms. At the same time, we
believe that MapReduce is not a passing fad, as witnessed
by the rapidly growing MapReduce community, including
many of the big Web 2.0 companies like Facebook, Yahoo!,
and of course Google. Even traditional enterprise customers
of RDBMSs, such as JP Morgan Chase [1], VISA [2], The
New York Times [3] and China Mobile [4] have started in-
vestigating and embracing MapReduce. More than 80 com-
panies and organizations are listed as users of Hadoop –
the open source version of MapReduce [5]. In fact, IBM
is engaged with a number of enterprise customers to pro-
totype novel Hadoop-based solutions on massive amount of
structured and unstructured data for their business analyt-
ics applications. A few examples were provided in the talk
given by IBM at the Hadoop Summit 2009 [6]. Therefore, it
is very important to study analytic techniques on this new
platform.

MapReduce is being used for various data analytic ap-
plications. Based on our service engagement with enterprise
customers, as well as the observation from the use of MapRe-
duce in Web 2.0 companies, log processing emerges as an im-
portant type of data analysis commonly done with MapRe-
duce. In log processing, a log of events, such as click-stream,
log of phone call records or even a sequence of transactions,
is continuously collected and stored in flat files. MapRe-
duce is then used to compute various statistics and derive
business insights from the data.

There are several reasons that make MapReduce prefer-
able over a parallel RDBMS for log processing. First, there
is the sheer amount of data involved. For example, China
Mobile gathers 5–8TB of phone call records per day [4]. At
Facebook [7], almost 6TB of new log data is collected every
day, with 1.7PB of log data accumulated over time. Just for-
matting and loading that much data into a parallel RDBMS
in a timely manner is a challenge. Second, the log records
do not always follow the same schema. Developers often
want the flexibility to add and drop attributes and the in-
terpretation of a log record may also change over time. This
makes the lack of a rigid schema in MapReduce a feature
rather than a shortcoming. Third, all the log records within
a time period are typically analyzed together, making sim-
ple scans preferable to index scans. Fourth, log processing
can be very time consuming and therefore it is important
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Figure 1: Overview of MapReduce.

to keep the analysis job going even in the event of failures.
While most parallel RDBMSs have fault tolerance support,
a query usually has to be restarted from scratch even if just
one node in the cluster fails. In contrast, MapReduce deals
more gracefully with failures and can redo only the part of
the computation that was lost because of a failure. Last but
not least, the Hadoop [8] implementation of MapReduce is
freely available as open-source and runs well on inexpensive
commodity hardware. For non-critical log data that is an-
alyzed and eventually discarded, cost can be an important
factor. In comparison, a commercial parallel RDBMS can
cost hundreds of thousands of dollars, even on a moderate
size cluster.

There are, of course, many different ways of doing log
processing with MapReduce. However, at an abstract level,
a few common patterns emerge (e.g., [7, 9]). The log data
is typically stored in the underlying distributed file system
(DFS) in timestamp order. In addition, there are usually one
or more reference tables containing information about users,
locations, etc. These reference tables vary in size but are
usually much smaller than the log data. They are typically
maintained in an RDBMS but copied to the DFS to make
log processing in MapReduce more efficient. For example, at
Facebook, 4TB of reference data is reloaded into Hadoop’s
DFS every day [7].

A simple log processing job in MapReduce might scan a
subset of log files corresponding to a specified time window
(e.g. a day), and compute aggregated counts grouped by
age, gender or location. As part of this analysis, an equi-
join is often required between the log and one or more of the
reference tables. Note that the equi-join for log processing
is different from typical star joins in traditional data ware-
house applications. In star joins, dimension data is often
first reduced based on constraints, then the product of sev-
eral dimension tables is joined with the fact table often mak-
ing use of indexes. In contrast, equi-join for log processing is
usually performed on all the log records, and constraints on
reference data are seldom specified. This is because one of
the goals of log processing is to compute statistics for all the
log records on various combination of reference dimensions.
Also note that it is not feasible to pre-join the log with all
its reference data, since the pre-joined result could be orders
of magnitude larger than the log.

The equi-join between the log and the reference data can
have a large impact on the performance of log processing.
Unfortunately, the MapReduce framework is somewhat cum-

bersome for joins, since it was not originally designed to
combine information from two or more data sources. Conse-
quently, adapting well-known join algorithms to MapReduce
is not as straightforward as one might hope, and MapReduce
programmers often use simple but inefficient algorithms to
perform equi-joins.

Leveraging the rich studies of join algorithms in parallel
and distributed database systems, this paper demonstrates
the implementation of several well-known join strategies in
MapReduce and conducts comprehensive experiments to com-
pare these join techniques on this new platform. To the best
of our knowledge, this paper is the first to conduct a sys-
tematic experimental comparison of a broad set of join al-
gorithms on the MapReduce platform. The contributions of
this paper are as follows:

1. We provide a detailed description of several equi-join
implementations for the MapReduce framework. We show
that it is possible, but not always straightforward, to im-
plement the well-known join strategies efficiently as vanilla
MapReduce jobs.

2. For each algorithm, we design various practical prepro-
cessing techniques to further improve the join performance
at query time. Unlike previous work in this area [27], our
join algorithms do not require any modification to the basic
MapReduce framework and can be readily used by existing
MapReduce platforms like Hadoop.

3. We conduct an extensive experimental evaluation to
compare the various join algorithms on a 100-node Hadoop
cluster. First, a detailed breakdown of a MapReduce join
algorithm is provided to reveal the overheads inherent in the
MapReduce framework. Then, we thoroughly demonstrate
the tradeoffs among the different join algorithms and the
benefit that preprocessing can provide.

4. Our results show that the tradeoffs on this new plat-
form are quite different from those found in a parallel RDBMS,
due to deliberate design choices that sacrifice performance
for scalability in MapReduce. An important trend is the
development of declarative query languages [10, 11, 15, 24]
that sit on top of MapReduce. Our findings provide an im-
portant first step for query optimization in these languages.

The rest of the paper is organized as follows. We pro-
vide an overview of the MapReduce framework in Section 2.
Then Section 3 describes our equi-join implementations for
log processing in MapReduce. Next, we present our experi-
mental results in Section 4. Finally, related work is discussed
is Section 5, and we conclude in Section 6.



2. MAPREDUCE OVERVIEW
Programming in MapReduce is fairly easy. A user only

needs to define a map and a reduce function. The map func-
tion takes a key-value pair (K, V ) as the input and gener-
ates some other pairs of (K′, V ′) as the output. The reduce
function takes as the input a (K′, LIST V ′) pair, where
LIST V ′ is a list of all V ′ values that are associated with
a given key K′. The reduce function produces yet another
key-value pair as the output. Typically, both the input and
the output of a MapReduce job are files in a distributed file
system, such as the Google file system [19]. An overview of
MapReduce is shown in Figure 1.

When a MapReduce job is launched on a cluster of n
nodes, a job-tracker creates a total of m map tasks and r
reduce tasks. As a rule of thumb [16], m and r are often
set to be 10 × n and n, respectively. Each map task works
on a non-overlapping partition (called a split) of the input
file. Typically, a split corresponds to a block in the DFS.
Each map task Mi, i = 1, . . . , m does the following: first, it
reads the assigned file split; second, it converts the raw bytes
into a sequence of (K, V ) pairs according to an “interpreter”
associated with the file format; and finally it calls the user-
defined map function with each (K, V ) pair. The output
(K′, V ′) pairs are first partitioned into r chunks bi,1, . . . , bi,r,
one for each reduce task. The partitioning function can be
customized, but has to guarantee that pairs with the same
key are always allocated to the same chunk. Next, the pairs
in each chunk are sorted by K′. Finally, the sorted chunks
are written to (persistent) local storage.

Each reduce task Rj needs to fetch the jth chunk out-
putted by every map task before calling the reduce function.
The job-tracker keeps track of the state of every task. On
the completion of a map task Mi, it informs each reduce task
Rj , which then pulls over the jth chunk bi,j remotely. This
is referred to as the shuffle phase in MapReduce. Note that
the shuffling of one map output can happen in parallel with
the execution of another map task. After all map tasks have
finished and all the chunks b1,j , . . . , bm,j have been copied
over, each Rj merges its chunks and produces a single list
of (K′, V ′) pairs sorted by K′. The reduce task then gen-
erates (K′, LIST V ′) pairs from this list and invokes the
user-defined reduce function to produce the final output.

MapReduce has several built-in features desirable in a
large-scale distributed environment, as described below.

First, MapReduce exploits function-shipping to reduce the
network overhead. Each map task is preferred to be sched-
uled on a node that stores a copy of the input data split
locally.

Second, a MapReduce job is fault-tolerant. The DFS
replicates every data block multiple times on different nodes.
Thus, the input file can survive node failure. If a map task
fails, the job-tracker will schedule a new one on a differ-
ent node to redo the same work. Similarly, a new reduce
task is scheduled if one fails. Note that because each map
task stores its output persistently in the local storage, the
failure of a reduce task does not trigger the re-execution of
any completed map task, as long as the local storage is still
accessible.

Finally, MapReduce supports load-balancing. The tasks
for a given job are not assigned to the cluster all at once.
Each node is given a certain number of initial tasks. Every
time a node finishes a task, it asks for more work from the
job-tracker. This way, faster nodes naturally get more tasks

Basic strategy Preprocessing technique
standard repartition join, directed join with
improved repartition join pre-partitioned L and R
broadcast join pre-replicate R
semi-join pre-filter R
per-split semi-join pre-filter R

Table 1: MapReduce-based join algorithms studied
in this paper.

than slower ones. Such a design also enables better perfor-
mance under failures: if a node fails, tasks assigned to this
node are spread over the surviving nodes in the cluster.

Note that compared to traditional RDBMSs where path
length is carefully optimized, MapReduce has more over-
heads because of its support for schema flexibility, fault-
tolerance and load-balancing. The philosophy of MapRe-
duce is to concern less about the per-node efficiency, but to
focus more on scalability instead. As long as the framework
scales, any moderate performance loss on a single node can
be compensated by simply employing more hardware.

3. JOIN ALGORITHMS IN MAPREDUCE
In this section, we describe how to implement several equi-

join algorithms for log processing in MapReduce. We use
the MapReduce framework as is, without any modification.
Therefore, the support for fault tolerance and load balancing
in MapReduce is preserved.

Problem Statement: We consider an equi-join between
a log table L and a reference table R on a single column,
L ⊲⊳L.k=R.k R, with |L| ≫ |R|. (Multi-way joins are briefly
discussed in Section 3.5.) We assume that both L and R as
well as the join result are stored in DFS. For simplicity, we
assume that there are no local predicates or projections on
either table. Extending our methods to relax these assump-
tions is straightforward. Finally, we assume that scans are
used to access L and R. Incorporating indexes in MapRe-
duce is an important problem, but is left for future work.

Our equi-join algorithms for MapReduce borrow from the
research literature on join processing in shared-nothing par-
allel RDBMSs [17] and distributed RDBMSs [14]. Table 3
summarizes the equi-join strategies that we study. For each
strategy, we consider further improving its performance with
some preprocessing techniques. Although these join strate-
gies are well-known in the RDBMS literature, adapting them
to MapReduce is not always straightforward. We provide
crucial implementation details of these join algorithms in
MapReduce. The declarative query languages appearing on
top of MapReduce, such as Pig [24] from Yahoo!, Hive [10]
from Facebook, and Jaql [11] from IBM, already use some
of these equi-join strategies but often implement them in a
less efficient way. We will summarize the implementation
differences as we proceed. In addition, we provide an exper-
imental comparison between our join algorithms and those
implemented in Pig in Section 4.4.

We assume that each map or reduce task can option-
ally implement two additional functions: init() and close().
These are called before and after each map or reduce task,
respectively. We also assume that the default partitioning
function in a map task assigns each output pair to a reducer
according to a hash of the output key K′. Some of our join
algorithms will customize this partitioning function as well
as how records are grouped in the reducer. Sometimes, we



need neither the key nor the value when outputting a pair.
In that case, we simply output a null. A MapReduce job
can be configured to be map-only, i.e., no reduce function
is specified. In that case, the sort and the merge phase are
bypassed and the output of each map task is stored as a
separate file directly in the DFS, instead of in the local file
system.

3.1 Repartition Join
Repartition join is the most commonly used join strat-

egy in the MapReduce framework. In this join strategy, L
and R are dynamically partitioned on the join key and the
corresponding pairs of partitions are joined.

Standard Repartition Join: This join strategy resem-
bles a partitioned sort-merge join in the parallel RDBMS
literature. It is also the join algorithm provided in the con-
tributed join package of Hadoop (org.apache.hadoop.contrib.

utils.join).
The standard repartition join can be implemented in one

MapReduce job. In the map phase, each map task works on
a split of either R or L. To identify which table an input
record is from, each map task tags the record with its orig-
inating table, and outputs the extracted join key and the
tagged record as a (key, value) pair. The outputs are then
partitioned, sorted and merged by the framework. All the
records for each join key are grouped together and eventu-
ally fed to a reducer. For each join key, the reduce function
first separates and buffers the input records into two sets ac-
cording to the table tag and then performs a cross-product
between records in these sets. The pseudo code of this algo-
rithm is provided in Appendix A.1.

One potential problem with the standard repartition join
is that all the records for a given join key from both L and
R have to be buffered. When the key cardinality is small or
when the data is highly skewed, all the records for a given
join key may not fit in memory. Variants of the standard
repartition join are used in Pig [24], Hive [10], and Jaql [11]
today. They all suffer from the same problem that all records
from the larger table L may have to be buffered.

Improved Repartition Join: To fix the buffering prob-
lem of the standard repartition join, we introduce the im-
proved repartition join with a few critical changes. First, in
the map function, the output key is changed to a composite
of the join key and the table tag. The table tags are gen-
erated in a way that ensures records from R will be sorted
ahead of those from L on a given join key. Second, the
partitioning function is customized so that the hashcode is
computed from just the join key part of the composite key.
This way records with the same join key are still assigned to
the same reduce task. The grouping function in the reducer
is also customized so that records are grouped on just the
join key. Finally, as records from the smaller table R are
guaranteed to be ahead of those from L for a given join key,
only R records are buffered and L records are streamed to
generate the join output. The detail implementation of this
algorithm is shown in Appendix A.2.

The improved repartition join fixes the buffering problem
in the standard version. However, both versions include two
major sources of overhead that can hurt performance. In
particular, both L and R have to be sorted and sent over
the network during the shuffle phase of MapReduce.

Preprocessing for Repartition Join: The shuffle over-
head in the repartition join can be decreased if both L and R

have already been partitioned on the join key before the join
operation. This can be accomplished by pre-partitioning L
on the join key as log records are generated and by pre-
partitioning R on the join key when it is loaded into the
DFS. Then at query time, matching partitions from L and
R can be directly joined.

In contrast to a parallel RDBMS, it is not possible to
guarantee that the corresponding partitions from L and R
are collocated on the same node. This is because the DFS
makes independent decisions on where to store a particular
data block. Therefore, at query time, we have to rely on
the directed join strategy. The directed join algorithm is
implemented as a map-only MapReduce job. Each map task
is scheduled on a split of Li. During the initialization phase,
Ri is retrieved from the DFS, if it’s not already in local
storage, and a main-memory hash table is built on it. Then
the map function scans each record from a split of Li and
probes the hash table to do the join. Note that the number of
partitions can be chosen so that each Ri fits in memory. The
pseudo code of this algorithm is provided in Appendix A.3.

Note that the map-side join provided in the Hadoop join
package (org.apache.hadoop.mapred.join) is similar to the di-
rected join algorithm. However, the map-side join requires
that all records in each partition of the input tables are
strictly sorted by the join key. In addition, this algorithm
buffers all the records with the same join key from all in-
put tables in memory. In the case of skewed L table, the
map-side join can easily run out of memory. In contrast,
the directed join algorithm only buffers the partition from
the small table R, thus can handle data skew in L.

3.2 Broadcast Join
In most applications, the reference table R is much smaller

than the log table L, i.e. |R| ≪ |L|. Instead of moving
both R and L across the network as in the repartition-based
joins, we can simply broadcast the smaller table R, as it
avoids sorting on both tables and more importantly avoids
the network overhead for moving the larger table L.

Broadcast join is run as a map-only job. On each node, all
of R is retrieved from the DFS to avoid sending L over the
network. Each map task uses a main-memory hash table to
join a split of L with R.

In the init() function of each map task, broadcast join
checks if R is already stored in the local file system. If not,
it retrieves R from the DFS, partitions R on the join key,
and stores those partitions in the local file system. We do
this in the hope that not all partitions of R have to be loaded
in memory during the join.

Broadcast join dynamically decides whether to build the
hash table on L or R. The smaller of R and the split of L is
chosen to build the hash table, which is assumed to always fit
in memory. This is a safe assumption since a typical split is
less than 100MB. If R is smaller than the split of L, the init()
function is used to load all the partitions of R into memory
to build the hash table. Then the map function extracts the
join key from each record in L and uses it to probe the hash
table and generate the join output. On the other hand, if the
split of L is smaller than R, the join is not done in the map
function. Instead, the map function partitions L in the same
way as it partitioned R. Then in the close() function, the
corresponding partitions of R and L are joined. We avoid
loading those partitions in R if the corresponding partition
of L has no records. This optimization is useful when the



domain of the join key is large. Appendix A.4 shows the
details of the broadcast join implementation.

Note that across map tasks, the partitions of R may be
reloaded several times, since each map task runs as a sep-
arate process. We discuss opportunities for reducing this
overhead in Section 4.5.

Pig also has an implementation of broadcast join. In Sec-
tion 4.4, we compare our broadcast join with the Pig version.

Preprocessing for Broadcast Join: Although there is
no way to precisely control the physical placement of replicas
in the DFS, by increasing the replication factor for R we can
ensure that most nodes in the cluster have a local copy of R.
This can enable broadcast join to avoid retrieving R from
the DFS in its init() function.

3.3 Semi-Join
Often, when R is large, many records in R may not be ac-

tually referenced by any records in table L. Consider Face-
book as an example. Its user table has hundreds of millions
of records. However, an hour worth of log data likely con-
tains the activities of only a few million unique users and the
majority of the users are not present in this log at all. For
broadcast join, this means that a large portion of the records
in R that are shipped across the network (via the DFS) and
loaded in the hash table are not used by the join. We exploit
semi-join to avoid sending the records in R over the network
that will not join with L. To the best of our knowledge,
this is the first description of a semi-join implementation on
MapReduce.

The semi-join implementation has three phases, each cor-
responding to a separate MapReduce job (pseudo code is
provided in Appendix A.5).

The first phase of semi-join is run as a full MapReduce job.
In the map function, a main-memory hash table is used to
determine the set of unique join keys in a split of L. A hash
table is used because MapReduce does not directly support
hash-based aggregation. By sending only the unique keys to
the map output, the amount of data that needs to be sorted
is decreased. The reduce task simply outputs each unique
join key. One reducer is used to consolidate all the unique
keys into a single file L.uk, which we assume is small enough
to fit in memory.

The second phase of semi-join is similar to the broadcast
join and is run as a map-only job. The init() function loads
L.uk into a main-memory hash table. Then the map() func-
tion iterates through each record in R and outputs it if its
join key is found in L.uk. The output of this phase is a list
of files Ri, one for each split of R.

Finally, in the third phase of semi-join, all the Ri are
joined with L, using the broadcast join previously described.

Although semi-join avoids sending the records in R over
the network that will not join with L, it does this at the cost
of an extra scan of L. In Section 4, we evaluate whether the
extra scan of L actually pays off.

Preprocessing for Semi-Join: It is possible to move
the first two phases of semi-join to a preprocessing step and
only execute the last phase at query time. This preprocess-
ing can even be done incrementally. For example, as new
records in L are generated, the unique join keys of these
records can be accumulated and joined with R to determine
the subset of R that will join with L. Note that unlike pre-
partitioning, this preprocessing technique does not move the
log data.

3.4 Per-Split Semi-Join
One problem with semi-join is that not every record in the

filtered version of R will join with a particular split Li of L.
The per-split semi-join is designed to address this problem.

The per-split semi-join also has three phases, each corre-
sponding to a separate MapReduce job. The first and the
third phases are map-only jobs, while the second phase is
a full map-reduce job. The first phase generates the set of
unique join keys in a split Li of L and stores them in the
DFS file Li.uk. In the second phase, the map function loads
all records from a split of R into a main-memory hash table.
The close function of the map task reads the unique keys
from each Li.uk file and probes the hash table for matching
records in R. Each matched record is outputted with a tag
RLi

, which is used by the reduce function to collect all the
records in R that will join with Li. In the final phase, the
file for RLi

and Li are joined using the directed join. The
implementation details of the per-split semi-join algorithm
can be found in Appendix A.6.

Compared to the basic semi-join, the per-split semi-join
makes the third phase even cheaper since it moves just the
records in R that will join with each split of L. However, its
first two phases are more involved.

Preprocessing for Per-split Semi-join: Like the basic
semi-join, the per-split semi-join algorithm can also benefit
from moving its first two phases to a preprocessing step.

3.5 Discussion
Preprocessing Considerations: The pre-partitioning

technique for directed join often has limited applicability,
since L can only be physically partitioned one way. This
can become a problem if L needs to be joined with different
reference tables on different join keys. Other preprocess-
ing techniques do not have this limitation because they are
insensitive to how L is partitioned. Also, pre-partitioning
typically has a higher cost than the preprocessing used in
semi-join and per-split semi-join since the larger table L has
to be shuffled. Finally, the pre-replication technique de-
scribed for broadcast join becomes infeasible when R or the
size of the cluster is large.

Multi-Way Joins: So far, our discussion has been lim-
ited to single joins. But of course in practice, L may be
joined with several reference tables on different join keys.
Repartition join would need to run a separate MapReduce
job to join each reference table in this case. In contrast, it is
fairly easy to extend broadcast join, semi-join and per-split
semi-join to process multiple reference tables at the same
time.

4. EXPERIMENTAL EVALUATION
All our experiments were run on a 100-node cluster. Each

node had a single 2.4GHz Intel Core 2 Duo processor with
4GB of DRAM and two SATA disks. Red Hat Enterprise
Server 5.2 running Linux 2.6.18 was used as the operating
system. The 100 nodes were spread across two racks, and
each rack had its own gigabit Ethernet switch. The rack level
bandwidth is 32Gb/s. Under full load, we observed about
35MB/s cross-rack node-to-node (full-duplex) bandwidth.

We used Hadoop version 0.19.0 and configured it to run
up to two map and two reduce tasks concurrently per node.
Thus, at any point in time, at most 200 map tasks and 200
reduce tasks could run concurrently in our cluster. We con-
figured Hadoop DFS (HDFS) to stripe across both disks on
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Figure 2: System behavior on a single node during the execution of the standard repartition join algorithm.
Two concurrent map and two concurrent reduce tasks can run on a node at the same time.

each node and use a 128MB block size. For fault tolerance,
each HDFS block was replicated three times.

We implemented all the join algorithms listed in Table 3 in
Section 3. Although the tradeoffs of similar join algorithms
have been studied in database systems, as we shall see, those
results are not the same in the MapReduce environment. For
instance, because of the overheads in MapReduce, savings
in network bandwidth may not be as important.

4.1 Datasets
In our experiments, we use synthetic datasets to simulate

an event log L being joined to some sort of user informa-
tion R. Here, both L and R were stored as HDFS files and
striped across the cluster. Each record in L had 100 bytes
on average, whereas each record in R had exactly 100 bytes.
The join result is a 10-byte join key, a 10-byte column from
L, and a 5-byte column from R. Columns that were not
needed were removed as early as possible in join process-
ing. The size of L was fixed at 500GB, while the size of R
varied from 100K records (roughly 10MB) to 1000M records
(roughly 100GB).

The join between L and R is designed to be the typical n-

to-1 join, with one or more records in L referencing exactly
one record in R. To simulate a common case in log analysis
where many users are inactive over the measurement period,
we fixed the fraction of R that was referenced by L to be
0.1%, 1%, or 10%. Note that in this setting all the records in
L always appeared in the join result, whereas only a fraction
of R appeared in the result. To simulate some users being
more active than others, a Zipf distribution was used to
determine the frequency of each reference key appearing in
L. We studied the cases where the Zipf skew factor was 0
(uniform) and 0.5. In both settings, the referenced R keys
are assigned randomly to records in L.

4.2 MapReduce Time Breakdown
To understand the performance of the join algorithms dis-

cussed in this paper, one needs to first understand what
transpires during the execution of a MapReduce job and the
overhead of various execution components of MapReduce.
As a representative example, we inspect the execution of
the standard repartition join algorithm from the perspec-
tive of a single node in the cluster. This join is performed
on the 500GB log table and a 30MB reference table with
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Figure 3: Time breakdown.

1% actually referenced by the log records. This MapReduce
job had about 4000 map tasks and 200 reduce tasks. On
average, a node was assigned 40 map and 2 reduce tasks. In
Figure 2, we show the CPU, disk and network activities on
a single node, with respect to the current state of the job.

This breakdown leads to several interesting observations.
First, the map phase was clearly CPU-bound, while the re-
duce phase was limited by the network bandwidth when
writing the three copies of the join result to HDFS. Sec-
ond, while the map tasks were running, the disk and the
network activities were moderate and periodic. The peaks
were related to the output generation in the map task and
the shuffle phase in the reduce task. Third, notice that the
node was almost idle for about 30 seconds between the 9
minute and 10 minute mark. During this time, the reduce
tasks were simply waiting for the slowest map task to finish
as the reduce function cannot be called until all map tasks
on all the nodes have completed. Finally, Figure 2 also illus-
trates how the MapReduce framework, despite its simplicity,
is able to use all available system resources. By enabling in-
dependent and concurrent map tasks, and by using a loose
coupling between map and reduce phases, almost all CPU,
disk and network activities can be overlapped. Moreover,
this is done in a way that can dynamically adapt to work-
load skew or failures.

To get an idea of the cluster-wide behavior during the
same time, Figure 3 further subdivides the map and reduce
tasks into smaller operations, showing their average perfor-
mance over all nodes in the cluster. On average, about 65%
of the total time was spent in the map task and about 25%
in the reduce task. Each node spent about 10% of the time
waiting. Operations such as sort, spill, and merge (which
can be avoided depending on the join algorithm) accounted
for 17% of the time. While some of the overheads will be
reduced as Hadoop matures, the following four overheads
are inherent in the MapReduce framework. (1) For fault
tolerance, the full output of each map task is checkpointed
to local storage. (2) To accommodate schema flexibility,
the framework adds the overhead of interpreting each input
record at runtime. (3) By leveraging commodity storage,
MapReduce has to maintain data consistency in the soft-
ware layer. In HDFS, by default, a checksum is created for
every 512 bytes of data and is verified on every read. (4)
For better load balancing and failure performance, many
relatively small tasks are created and each task always has
some initialization cost. Note that checkpointing is mainly

Our Face-
Parameter cluster book

N # nodes per rack 50 40
C # concurrent map task per node 2 8
B uplink bandwidth (Gb/s) per rack 16 4
P output rate (MB/s) per map task 1.3 N/A

Table 2: Parameters and typical values

I/O overhead, whereas the latter three are all CPU over-
heads.

The overheads listed above could change the conventional
wisdom that network is often the bottleneck in a distributed
system. Now, we analytically estimate when the network is
actually saturated in terms of the rate that each map task
generates its output. Suppose that we have a number of
parameters given in Table 4.2. Each node generates PC
mega bytes of data per second. Most of the data has to be
sent to other nodes. The cross-rack network bandwidth per
node is B/N giga bits per second. So, in order to saturate
the network, we need:

PC >
1024B

8N
⇒ P >

128B

NC

Plugging in the parameters of our cluster listed in Ta-
ble 4.2, each map task has to produce data at approximately
20MB/s to saturate the network. This rate is much higher
than the rate of about 1.3MB/s that we observed in Fig-
ure 2. Table 4.2 also listed a configuration of the Facebook
environment [21]. There, the network is the bottleneck as
long as P is above 1.6MB/s, very close to our observed rate.

4.3 Experimental Results
We now present the performance results for the different

join algorithms described in this paper. First, we consider
the case where no preprocessing is done for the join between
L and R. Then we consider the case where some prepro-
cessing is done to improve the join performance. Finally, we
evaluate the scalability of these join algorithms.

Note that the results in this section omit the overhead of
writing the join output to HDFS. Not only does this help
highlight the differences in the join algorithms, but it also
simulates the common case where the join output is aggre-
gated into a much smaller dataset immediately after the
join.

No Preprocessing: In Figure 4, we present the results
for the join algorithms on the uniform dataset. Each graph
corresponds to a different fraction of R being referenced.
The x-axis shows the size of R in records and bytes in log
scale. The y-axis shows the elapsed time for each join algo-
rithm in seconds.

Let’s start with the standard repartition join, denoted as
standard, in Figure 4(a). Moving from right to left, we ob-
serve that as R got smaller the time for the standard repar-
tition join decreased initially (as expected), but then sur-
prisingly increased. This is because, as R got smaller, there
were more records in L with the same join key. And since
the standard join has to buffer all the records in L with the
same join key, this caused a large number of objects to be
allocated in memory. In some extreme cases, the standard
repartition join did not finish because it ran out of memory.
Similar patterns can be observed in Figure 4(b) and 4(c).

As expected, the improved repartition join, denoted as
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Figure 4: Uniform distribution of join key in L, no preprocessing.
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Figure 5: Skewed distribution of join key in L, no preprocessing.

# records in R improved broadcast

0.3 million 145 GB 6 GB
10.0 million 145 GB 195 GB

300.0 million 151 GB 6,240 GB

Table 3: Amount of data moved over the network
for the uniform dataset and with 1% of R referenced.

improved, always performed better than the standard repar-
tition join, since it did not buffer L in memory. However,
the time for the improved repartition join still increased as
R got smaller. This is because eventually there was not
enough join keys to distribute the work evenly among the
reduce tasks. For example, when R had 100K records and
0.1% of it was referenced, there were only 100 unique join
keys in L. Since all the records in L with the same join key
were sent to a single reduce task, about half of the 200 re-
duce tasks had no work to do while the other half received
twice the average workload.

Next, we consider the broadcast join. Its performance
improved as the size of R and the fraction that was refer-

enced decreased. When R had about 1M records or less, it
was always better than the improved repartition join algo-
rithm. However, broadcast join’s relative performance de-
graded rapidly as R got bigger. This is because the cost of
transferring R to every node across the network and loading
it in memory started to dominate. Table 3 compares the
amount of data transferred in the broadcast join and the
improved repartition join. In Section 4.5, we will explore
ways to increase the applicable range for the broadcast join.

Turning to semi-join, it was never the best algorithm.
This is mainly because of the relatively high overheads of
scanning L from HDFS, as listed in the previous section.
Therefore, the extra scan of L required by semi-join negated
any performance advantage it might have had. Finally, we
do not show the results for the per-split semi-join, since it
was always worse than semi-join due to a more expensive
second phase.

The results for the skewed dataset are shown in Figure 5.
The graphs follow similar patterns to those with the uniform
dataset. The main difference is that the performance of
the standard repartition join degraded faster than that of
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Figure 6: Uniform distribution of join key in L, with preprocessing.

the improved repartition join as the size and the fraction
of referenced R got smaller. This is because the skewed
dataset amplified the problems discussed earlier with these
two algorithms.

With Preprocessing: Often, as records are generated
for L or R, some preprocessing can be done on those records
to improve join performance. In this section, we study how
much improvement can be achieved by the preprocessing
versions of the join algorithms. We also include the results
of the improved repartition join (without preprocessing) to
serve as a baseline.

Directed join is performed on pre-partitioned L and R.
It is tricky to determine the right number of partitions.
We experimented with 200 and 5000 partitions, referred as
directed-part200 and directed-part5000 respectively, the for-
mer to match the number of cores in our cluster and the
latter to ensure most partitions fit in memory. The prepro-
cessing step of broadcast join replicates R to every node in
the cluster. For both semi-join and per-split semi-join, we
assume that their first two phases are done during prepro-
cessing and only the last phase is executed at query time.

The preprocessing results on the uniform dataset are shown
in Figure 6. Results for the skewed dataset are omitted, since
they were similar to those for the uniform dataset. Look-
ing at the graphs in Figure 6, going from left to right, we
see that as the size of R increased, broadcast join degraded
the fastest, followed by directed-part200 and semi-join. Per-
split semi-join was almost as efficient as directed-part5000
and both tolerated data skew and reference ratio changes
well. This mainly resulted from working with smaller hash
tables on R that fit in memory. In general, compared to the
improved repartition join, preprocessing lowered the time
by almost 60% (from about 700 to 300 seconds) over a wide
range of settings.

Finally, the cost of preprocessing also varies. The average
preprocessing time for semi-join, per-split and prepartition-
5000 are 5, 30, and 60 minutes, respectively. The former two
are cheaper since they do not move L across the network.

Scalability: In this section, we explore the performance
impact of increasing the join input size linearly with the
number of nodes in the cluster. For our scalability experi-
ment, we used L with uniform distribution and referencing
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Figure 7: Results of scale-up experiment (uniform
join key distribution, 1% of R referenced)

1% of R. We fixed R to have 10 million records and var-
ied the amount of data in L by maintaining 5GB per node.
We then scaled the number of nodes in the cluster from 5
to 100. The results are shown in Figure 7. We see that all
algorithms scaled almost linearly. These algorithms natu-
rally spawn off more map and reduce tasks as the number of
nodes increases, and they use partitioned parallelism which
has robust scalability properties [17].

4.4 Comparison with Join Algorithms in Pig
A few join methods have been explored in the declara-

tive frameworks on MapReduce, like Pig [24], Hive [10] and
Jaql [11]. In this section, we compare our join algorithms
to those in Pig. Note that the contribution of this paper is
to investigate various parallel/distributed join techniques on
the MapReduce platform, thus the insights from our work
can be directly used by declarative frameworks like Pig.

There are two join strategies provided in Pig: reparti-
tion join and fragment replicate join. They resemble our
improved repartition join and broadcast join, respectively.

Table 4.4 shows a direct comparison between the improved
repartition join and the Pig repartition join (in Pig version
0.2) at a few selected points (in the interest of space we
only show a few representative results). These results con-



# records in R improved pig-2.0

uniform L 0.3 million 669 1805
ref 1% R 300 million 670 1819

skewed L 0.3 million 803 2089
ref 0.1% R 300 million 706 1764

Table 4: Improved repartition join vs. Pig reparti-
tion join

sistently show a more than 2.5X speedup with our improved
repartition join over the Pig repartition join, for both uni-
form and skewed distribution of join keys in L and various
sizes of R with different percentage being referenced by L.
Besides the Pig runtime overhead, the following implemen-
tation choices in Pig may contribute to the difference in
performance. First, the Pig repartition join treats both in-
put sources the same, therefore it may have to buffer records
from the larger input L (although this algorithm can spill
L to disk if necessary). Second, while our improved repar-
tition join employs a customized partitioning function, the
Pig repartition join uses an extra secondary sort in the re-
duce phase to guarantee that records of the same key are
ordered by their input tags. This secondary sort introduces
extra overhead to this join algorithm.

We also compare our broadcast join against the fragment
replicate join in Pig. For 0.3 million records in R, the broad-
cast join is consistently more than 3 times faster than the
fragment replicate join, on both uniform and skewed L ref-
erencing 0.1% and 1% of R. Our broadcast join is more
efficient because all map tasks on the same node share one
local copy of R, whereas the fragment replicate join always
re-reads R from DFS in every map task. In addition, our
broadcast join dynamically selects the smaller input (R or
the split of L) for the in-memory hash table, whereas Pig
always loads the full R in memory.

4.5 Discussion
Performance Analysis: As shown from our experiments,

the performance differences among the various join strate-
gies are within a factor of 3 in most cases, instead of an order
of magnitude that one might expect in traditional parallel or
distributed RDBMSs. As listed in Section 4.2, MapReduce
has more built-in computational overheads such as input
record interpretation, checksum validation and task initial-
ization. Because of these overheads and the relative high
network bandwidth in our environment, the shuffling cost
in repartition-based joins did not get highlighted. In other
environments with much lower network bandwidth, like the
cluster used in Facebook (see Table 4.2), the network costs
in repartition-based joins will become more prominent. As
a result, the performance gap among various join strategies
would be larger.

Customized Splits: For broadcast join, every map task
has the fixed overhead of loading the reference data in mem-
ory. If load balancing and failure performance are not im-
portant, one way to amortize such overhead is to make each
map task bigger. Instead of each map task working on a sin-
gle DFS block, we can assign multiple blocks to a map task.
If we simply group several consecutive blocks into a split, the
blocks are likely spread over different nodes. As a result, we
lose data locality when scheduling the map task. To preserve
locality, we customized the function that generates splits in
Hadoop, so that multiple non-consecutive blocks co-located
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Figure 9: The tradeoffs of various join strategies
summarized in a decision tree.

on the same node are grouped into one logical split, which
we call a big split. In our experiment, we grouped 5 blocks
into a big split.

Figure 8 shows the effect of using big splits for some se-
lected join algorithms. The elapsed time of broadcast join
was reduced by up to 50%, when using big splits. Without
big splits, each node had to load the reference data in mem-
ory about 40 times. With big splits, each node only loaded
the reference data 8 times. In contrast, the performance im-
provement for the improved repartition join was only about
3%, because using big splits only saved some initialization
cost in the join algorithm. We note that there is limitation
when using big splits, since a larger split size could adversely
affect load balancing.

Choosing the Right Strategy: Figure 9 summaries
the tradeoffs of the studied join strategies into a decision
tree. Based on statistics, such as the relative data size and
the fraction of the join key referenced (these statistics could
be collected on a sample of the inputs), this decision tree
tries to determine what is the right join strategy for a given
circumstance.

If data is not preprocessed, the right join strategy depends
on the size of the data transferred via the network. If the
network cost of broadcasting table R to every node is less
expensive than transferring both R and projected L, then
the broadcast join algorithm should be used.

When preprocessing is allowed, semi-join, per-split semi-
join and directed join with enough partitions are the best



choices. Semi-join and per-split semi-join offer further flex-
ibility since their preprocessing steps are insensitive to how
the log table is organized, and thus suitable for any number
of reference tables. In addition, the preprocessing steps of
these two algorithms are cheaper since there is no shuffling
of the log data.

Although crude, these guidelines shown in Figure 9 pro-
vide an important first step for query optimization in the
high level query languages on MapReduce, such as Pig, Hive
and Jaql.

5. RELATED WORK
There is a rich history of studying join algorithms in par-

allel and distributed RDBMSs [12, 13, 14, 26]. An interested
reader can refer to surveys on these algorithms [20, 22].

A more recent work [27] proposes extending the current
MapReduce interface with a merge function. While such an
extension makes it easier to express a join operation, it also
complicates the logic for fault-tolerance. In our work, we
choose not to change the existing MapReduce interface for
join implementation.

Lately, there have been several efforts in designing high
level query languages on MapReduce. This includes Pig [24],
Hive [10], and Jaql [11], all of which are open source. They
differ in the underlying data model and query syntax. Our
work is synergistic with such efforts by providing guidelines
on the choice of different join algorithms.

In [23], the authors discussed three join strategies (also
included in our study) that can be chosen by the suggested
optimizer in Pig. However, this work did not provide any
experimental result on the performance of these strategies.
In contrast, our study considered a broader set of join al-
gorithms and preprocessing strategies, contained crucial im-
plementation details, and conducted a comprehensive exper-
imental evaluation.

6. CONCLUSIONS AND FUTURE WORK
Joining log data with all kinds of reference data in MapRe-

duce has emerged as an important part of analytic opera-
tions for enterprise customers, as well as Web 2.0 companies.
This paper has leveraged over three decades of work in the
database community to design a series of join algorithms
on top of MapReduce, without requiring any modification
to the actual framework. Our design revealed many details
that make the implementation more efficient. We have eval-
uated the join methods on a 100-node system and shown
the unique tradeoffs of these join algorithms in the context
of MapReduce. We have also explored how our join algo-
rithms can benefit from certain types of practical prepro-
cessing techniques. The valuable insights obtained from our
study can help an optimizer select the appropriate algorithm
based on a few data and manageability characteristics.

There are a number of directions for future work, includ-
ing evaluating our methods for multi-way joins, exploring
indexing methods to speedup join queries, and designing an
optimization module that can automatically select the ap-
propriate join algorithms. In addition, this paper reveals
the limitations of the MapReduce programming model for
implementing joins, thus another important future direction
is to design new programming models to extend the MapRe-
duce framework for more advanced analytic techniques.
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APPENDIX

A. PSEUDO CODE OF MAPREDUCE JOIN
ALGORITHMS

We assume that the inputs to all the following algorithms are
(key, value) pairs, where the value V is bound to a full record of
R or L, and the input key K is simply null.

A.1 Standard Repartition Join

Map (K: null, V : a record from a split of either R or L)
join key ← extract the join column from V
tagged record← add a tag of either R or L to V
emit (join key, tagged record)

Reduce (K′: a join key,
LIST V ′: records from R and L with join key K′)

create buffers BR and BL for R and L, respectively
for each record t in LIST V ′ do

append t to one of the buffers according to its tag
for each pair of records (r, l) in BR ×BL do

emit (null, new record(r, l))

A.2 Improved Repartition Join

Map (K: null, V : a record from a split of either R or L)
join key ← extract the join column from V
tagged record← add a tag of either R or L to V
composite key ← (join key, tag)
emit (composite key, tagged record)

Partition (K: input key)
hashcode← hash func(K.join key)
return hashcode mod #reducers

Reduce (K′: a composite key with the join key and the tag
LIST V ′: records for K′, first from R, then L)

create a buffer BR for R
for each R record r in LIST V ′ do

store r in BR

for each L record l in LIST V ′ do

for each record r in BR do

emit (null, new record(r, l))

A.3 Directed Join

Init ()
if Ri not exist in local storage then

remotely retrieve Ri and store locally
HRi

← build a hash table from Ri

Map (K: null, V : a record from a split of Li)
probe HRi

with the join column extracted from V
for each match r from HRi

do

emit (null, new record(r, V ))

A.4 Broadcast Join

Init ()
if R not exist in local storage then

remotely retrieve R
partition R into p chunks R1..Rp

save R1..Rp to local storage

if R < a split of L then

HR ← build a hash table from R1..Rp

else

HL1
..HLp

← initialize p hash tables for L

Map (K: null, V : a record from an L split)
if HR exist then

probe HR with the join column extracted from V
for each match r from HR do

emit (null, new record(r, V ))
else

add V to an HLi
hashing its join column

Close ()
if HR not exist then

for each non-empty HLi
do

load Ri in memory
for each record r in Ri do

probe HLi
with r’s join column

for each match l from HLi
do

emit (null, new record(r, l))

A.5 Semi-Join

Phase 1: Extract unique join keys in L to a single file L.uk
Map (K: null, V : a record from an L split)

join key ← extract the join column from V
if join key not in unique key table then

add join key to unique key table
emit (join key, null)

Reduce (K′: a unique join key from table L,
LIST V ′: a list of null)

emit (K′, null)

Phase 2: Use L.uk to filter referenced R records;
generate a file Ri for each R split

Init ()
ref keys← load L.uk from phase 1 to a hash table

Map (K: null, V : a record from an R split)
join col← extract join column from V
if join col in ref keys then

emit (null, V )

Phase 3: Broadcast all Ri to each L split for the final join

A.6 Per-Split Semi-Join

Phase 1: Extract unique join keys for each L split to Li.uk
Map (K: null, V : a record from an L split Li)

join key ← extract the join column from V
if join key not in unique key table then

add join key to unique key table
emit (join key, null) (output file called Li.uk)

Phase 2: Use Li.uk to filter referenced R;
generate a file RLi

for each Li

Map (K: null, V : a record from an R split)
join col← extract join column from V
HR ← add (join col, V ) to a hash table

Close () (for map task)
files← all Li.uk files from the first phase
for each file Li.uk in files do

for each key k in Li.uk do

result← probe HR with key k
emit (RLi

, result)

Reduce (K′: RLi
, LIST V ′: all R records for RLi

)
write (null, LIST V ′) to file RLi

in DFS

Phase 3: Directed join between each RLi
and Li pair


