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SystemML

� Pervasive need to enable machine learning (ML) on massive 

datasets

� Increasing interest in implementing a ML algorithms on 

MapReduce

� Directly implementing ML algorithms on MapReduce is 

challenging

� Solution: SystemML – A Declarative Approach to Machine 

Learning on MapReduce
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SystemML Overview

� High-level language with ML specific 

constructs
• Syntax is similar to R and Matlab

� Matrix, vector and scalar data types

� Linear algebra and mathematics operators

� Optimizations based on data and 

system characteristics
• Cost-based and rule-based optimization

• Job generation heuristics

� Scalable implementations on Hadoop
• Handle large sparse data sets

• Parallelization is transparent to end users
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Scalable Operator

Implementations
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Optimizations

ICDE 2011

G=read("in/G", rows=1e6, cols=1e6);

p=read("in/p", rows=1e6, cols=1);

e=read("in/e", rows=1e6, cols=1);

ut=read("in/ut", rows=1, cols=1e6);

alpha=0.85; 

max_iteration=20;

i=0;

while(i<max_iteration){

p=alpha*(G%*%p)+(1-alpha)*(e%*%ut%*%p);

i=i+1;} 
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Example ML Algorithms Supported in SystemML

� Classification: linear SVMs, logistic regression

� Regression: linear regression

� Matrix Factorization: NMF, SVD, PCA

� Clustering: k-means

� Ranking: PageRank, HITS

� Data Exploration: Descriptive Statistics
• Univariate Statistics:

� Scale: Sum, Mean, Harmonic mean, Geometric mean, Min, Max, Range, Median, Quantile, Inter-

quartile-mean, Variance, Standard deviation, Coefficient of variance, Central moment, Skewness, 

Kurtosis, Standard error of mean, Standard error of skewness, Standard error of kurtosis

� Categorical: Mode, Per-category frequencies

• Bivariate Statistics:
� Scale-scale: Covariance, Pearson correlation

� Scale-categorical: Eta, ANOVA F measure

� Categorical-categorical: Chi-square coefficient, Cramer’s V, Spearman correlation

focus of this talk
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How hard is it?

� Seemingly trivial to implement in MapReduce
• Most descriptive statistics can be written in certain summation form

� Pitfall: these straight forward implementations can lead to
disasters in numerical accuracy

� Problem gets worse with increasing volumes of data

Variance

Mean

Sum
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Background: Floating Point Numbers

� Source of Inaccuracy: finite precision arithmetic for floating point 

numbers

� Floating point number system F ⊂ R: y = ±βe × .d1d2 . . . dt (0 ≤ di ≤ β−1)
• base β,

• precision t ,

• exponent range emin ≤ e ≤ emax

• IEEE double: β=2, t=53, emin =-1021, emax =1024

� Floating point numbers are not equally spaced.
• Example number system: β = 2, t = 3, emin = −1, and emax = 3

F={ 0, ±0.25, ±0.3125, ±0.375, ±0.4375, ±0.5, ±0.625, ±0.75, ±0.875, ±1.0, 

±1.25, ±1.5, ±1.75, ±2.0, ±2.5, ±3.0, ±3.5, ±4.0, ±5.0, ±6.0, ±7.0 }

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
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Background: Numerical Accuracy

� Example number system: β = 2, t = 3, emin = −1, and emax = 3

F={0, ±0.25, ±0.3125, ±0.375, ±0.4375, ±0.5, ±0.625, ±0.75, ±0.875, 

±1.0, ±1.25, ±1.5, ±1.75, ±2.0, ±2.5, ±3.0, ±3.5, ±4.0, ±5.0, ±6.0, ±7.0 }

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

relative error = |x-x’|/|x|

• x: true value

• x’: value in float point

relative error: 1.0computed: 0

6.375 round to 6.0

5.625 round to 6.0

true value: 0.75

� subtraction of 2 big and similar numbers: 6.375 – 5.625 ���� catastrophic cancellation for subtraction

relative error: 0.286computed: 5.0

5.0 + 0.25 = 5.25 round to 5.0

true value: 7.0

� big number + many small numbers: 5.0 + 0.25 + 0.25 + … + 0.25 (eight 0.25)  ���� pitfall for summation

relative error: 0.059 and 0.067computed: 6.0 and 6.0true value: 6.375 and 5.625

� round off: 6.375 and 5.625
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Background: Numerical Stability

� Algebraically equivalent algorithms for the same calculation 
produce different results on digital computers

• Some damp out errors
• Some magnify errors

� Numerical stability is a desirable property of numerical 
algorithms

• Algorithms that can be proven not to magnify approximation errors are 
called numerically stable

Sum: 5.0 + 0.25 + 0.25 + … + 0.25 (eight 0.25s)

Naïve 
Recursive
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Importance of Numerical Stability

� Numerical stability issue has been largely ignored in big data 

processing

• e.g. PIG and HIVE, are using well-known unstable algorithms for 

computing some basic statistics

� How about software floating point packages, e.g. BigDecimal?

• Arbitrary precision, but very slow
� +, -, *: 2 orders of magnitude slower

� /: 5 orders of magnitude slower

� Goal of this Talk: share our experience on descriptive 

statistics algorithms for big data

• Scalable – database people already understand

• Numerically Stable – need more attention!!!!!
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Numerically Stable Summation

� Naïve Recursive: unstable

� Sorted Recursive: better for nonnegative but needs an expensive sort

� Kahan: efficient and stable [Kahan 1965]

• Recursive summation with a correction term to compensate rounding error

(s’, c’) = KahanAdd (s, c , a) 

a’= a + c

s’= s + a’

c’ = a’- (s’- s)

� MR Kahan in SystemML:
• Mapper: apply Kahan to compute partial sum and correction

• Reducer: apply Kahan on partial results to compute sum

(s, c) = KahanAdd (s1, c1+c2, s2)

06.0

-0.256.0

0.25+

…….

0.25+

-0.56.0

0.25+

0.255.0

0.25+

05.0

correctionsum

Kahan: 5.0 + 0.25 + 0.25 + … + 0.25Kahan: 5.0 + 0.25 + 0.25 + … + 0.25Kahan: 5.0 + 0.25 + 0.25 + … + 0.25Stability Property: relative error bound 
independent of problem size n, when n is less 
than O(1016) for IEEE doubles

Our Proof: relative error bound independent 
of problem size n, as long as each mapper
processes less than O(1016) numbers

MR Kahan scales to larger problem size with numerical accuracy.

s/s’: old/new sum

c/c’: old/new correct

a: number to add

s1/s2: partial sums

c1/c2: partial corrects

s: total sum

c: total correct
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Numerically Stable Mean

� Naïve sum/count: unstable

� Incremental: stable [Chan et al 1979]
n1, n2: partial counts, µ1, µ2: partial means

n = n1 + n2

δ = µ2 - µ1 

µ = µ1 + δn2/n

� MR Incremental: adapt Incremental to MapReduce
n = n1 + n2

δ = µ2 - µ1 

µ = µ1 ¤ δn2/n   (¤ -- KahanAdd, maintain a correction term for µ)
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Numerically Stable Higher-Order Statistics

� Higher order statistics: central moment, variance, standard deviation, 

skewness, kurtosis (core: central moment                          )

� 2-Pass: 1st pass to compute mean, 2nd pass to compute mp

• Stable, but needs 2 scans of data

� Textbook 1-Pass: textbook rewrites
• Notoriously unstable (due to catastrophic cancellation), can even produce 

negative result for mp when p%2=0

• Unfortunately, widely used in practice

� Incremental: stable* & 1 pass [Bennett et al 2009]

� MR Incremental: adapt Incremental to MapReduce
• Use KahanAdd

¤

¤ ¤



© 2012 IBM Corporation13

Numerically Stable Covariance

� 2-Pass: 1st pass to compute means, 2nd pass to compute covariance
• Stable, but needs 2 scans of data

� Textbook 1-Pass: textbook rewrites
• Notoriously unstable (catastrophic cancellation)

• Unfortunately, widely used in practice

� Incremental: practically stable & 1 pass [Bennett et al 2009]

� MR Incremental: adapt Incremental to MapReduce
• Use KahanAdd

¤¤

¤¤
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Experiment Results

NA13.5Negative13.212.916.512.916.31000

NA13.2Negative12.913.116.913.116.0100

014.7014.414.016.314.015.910

R3

5.216.44.916.213.116.413.116.61000

5.615.85.315.613.416.913.416.1100

6.215.95.915.414.416.514.416.810

R2

Textbook SMLTextbook SMLNaïveSMLNaïveSMLRange

Standard DeviationVarianceMeanSumSize 

(million)

NA13.83.913.61000

NA12.72.812.8100

3.013.53.013.510

R2 vs R3

6.215.78.716.01000

6.415.48.515.6100

6.215.18.415.010

R1 vs R2

Textbook SMLTextbook SMLRange

Pearson-RCoVarianceSize 

(million)

Example Univariate Statistics

Example Bivariate Statistics

Ranges : R1= [1.0 – 1.5),  R2= [1000.0 – 1000.5), R3= [1000000.0 – 1000000.5)

� Data Sets: uniform distribution in 3 
ranges

• R1= [1.0 – 1.5),  R2= [1000.0 – 1000.5), 
R3= [1000000.0 – 1000000.5)

• modeled after NIST StRD benchmark 

� Accuracy Measure: 
• LRE = log(relative error)
• # significant digits that match between 

the computed value and the true value.
• true value: produced by BigDecimal with 

precision 1000.

Significantly better accuracy!
No sacrifice to  performance!
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Lessons Learned (1/2)

� Many existing numerical stable techniques can be adapted to 

the distributed environment

� Divide-and-conquer design helps in scaling to larger data sets 

while achieving good numerical accuracy
• e.g. MR Kahan can handle more data than Kahan with numerical 

accuracy

� Kahan technique is useful beyond simple summation

13.815.913.516.0

+¤+¤

StdVariance

13.015.114.215.0

+¤+¤

Pearson-RCovariance

R1 10 million points R1 vs R2 10 million points
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Lessons Learned (2/2)

� Shifting can be used for improved accuracy
• Accuracy degrades as magnitude of values increases

• Achieve better accuracy by shifting the data points by a constant prior 

to computation

� Performance need not be sacrificed for accuracy

014.7014.414.016.314.015.91000,000 – 1000,000.5

6.215.95.915.414.416.514.416.81000 – 1000.5

Textbook SMLTextbookSMLNaïveSMLNaïveSMLRange

Standard DeviationVarianceMeanSum

10 million points
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� Recommended Reading:
• Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. 

SIAM, 2nd edition, 2002.

� Thanks! and Questions?


