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ABSTRACT
Declarative large-scale machine learning (ML) aims at flexi-
ble specification of ML algorithms and automatic generation
of hybrid runtime plans ranging from single node, in-memory
computations to distributed computations on MapReduce
(MR) or similar frameworks. State-of-the-art compilers in
this context are very sensitive to memory constraints of
the master process and MR cluster configuration. Different
memory configurations can lead to significant performance
differences. Interestingly, resource negotiation frameworks
like YARN allow us to explicitly request preferred resources
including memory. This capability enables automatic re-
source elasticity, which is not just important for performance
but also removes the need for a static cluster configura-
tion, which is always a compromise in multi-tenancy envi-
ronments. In this paper, we introduce a simple and robust
approach to automatic resource elasticity for large-scale ML.
This includes (1) a resource optimizer to find near-optimal
memory configurations for a given ML program, and (2) dy-
namic plan migration to adapt memory configurations dur-
ing runtime. These techniques adapt resources according to
data, program, and cluster characteristics. Our experiments
demonstrate significant improvements up to 21x without un-
necessary over-provisioning and low optimization overhead.

1. INTRODUCTION
Enterprise data management evolves to a diverse mix of

transactional and analytical tools and languages [1, 32]. In-
creasing data sizes, the need for advanced analytics [10, 32],
and very specific workload characteristics [11, 46] led to
specialized systems for large-scale machine learning (ML).
Application scenarios are ubiquitous and range from tradi-
tional statistical tests for correlation and sentiment analysis
to cutting-edge ML algorithms including customer classifi-
cations, regression analysis, and product recommendations.

The state-of-the-art on large-scale ML aims at declarative
ML with high-level languages based on linear algebra and
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Figure 1: Estimated runtime [s] of two ML scripts
for linear regression with different control program
(CP) and MapReduce (MR) memory configurations.

statistical functions [6, 7, 12, 13, 20, 24, 31, 32, 46, 48]. In
contrast to tailor-made ML algorithms or ML libraries, this
declarative approach allows (1) full flexibility to specify new
ML algorithms or customizations, (2) physical data indepen-
dence of the underlying data representation (dense/sparse
matrices, matrix blocking, etc), and (3) both efficiency and
scalability via automatic cost-based optimization of hybrid
in-memory and distributed runtime plans. ML systems of-
ten exploit MapReduce [15] or more general data-parallel
distributed computing frameworks like Spark [49] in order
to share cluster resources with other specialized systems.

Problem of Memory-Sensitive Plans: Compiling hy-
brid runtime plans is important for declarative ML to enable
users to write their ML algorithms once but ensure efficiency
for small and medium problems (e.g., median job sizes of
analytics clusters were reported as <14 GB [39]), and good
scalability for larger problems. However, a key observation
is that plan compilation naturally becomes very sensitive
to memory configurations of master and map/reduce task
processes. Different cluster configurations quickly lead to
very different performance characteristics. This sensitivity is
problematic for two reasons. First, the user needs to reason
about plans and cluster configurations to achieve best per-
formance, which contradicts the goal of declarative machine
learning. Second, finding a good static cluster configuration
is a hard problem because of the variety of ML algorithms
and completely different workload characteristics.

Example Cost Comparison: Figure 1 shows the costs
of two linear regression algorithms with very different mem-
ory preferences. Both algorithms—a closed form direct solve
(DS) on the left, and an iterative conjugate gradient (CG) on
the right—solve an ordinary least square problem y = Xβ.
The diagram shows estimated costs for different memory
configurations of the master process, the so-called control
program (CP), and MapReduce tasks (MR). For the case of
1,000 features, DS is compute-intensive and hence prefers a
massively parallel, distributed runtime plan with small CP
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memory. In contrast, the iterative CG is IO bound and thus
benefits from a large CP memory, where we read the data
once and repeatedly compute matrix-vector multiplications
in-memory. Given the estimated costs, we would use 2 GB
CP/MR processes for DS, but a 10 GB CP process for CG.

Resource Negotiation Frameworks: A static clus-
ter configuration is always a compromise that misses op-
portunities, especially in multi-tenancy scenarios where the
same cluster is shared by different specialized systems for
ML, graph analysis, ETL, streaming, and query process-
ing. These multi-tenancy scenarios are addressed by next
generation resource negotiation frameworks like YARN [47],
Mesos [23], Omega [41], or Fuxi [53], which provide the flexi-
bility of sharing resources across specialized systems that no
longer need to rely on the same distributed runtime frame-
work. Most importantly for declarative ML, these frame-
works allow us to tackle the aforementioned problem of
memory-sensitive plans in a very principled way.

Challenges: Resource elasticity for large-scale ML is a
challenging problem. First, there is a variety of ML use
cases with very different performance characteristics, which
makes cost estimation crucial. Second, declarative ML re-
quires very good robustness because users rely on automatic
optimization. Robustness includes simplicity and maintain-
ability with regard to internal optimization phases, effective-
ness to find near-optimal plans, and efficiency in terms of low
overhead even for complex ML programs. Third, automatic
resource configuration itself is challenging. Decisions on CP
and MR memory budgets are inter-related, and intermediate
result sizes might be unknown during initial compilation due
to conditional control flow and data dependent operations.

Contributions: The primary contribution of this paper
is a systematic approach to automatic resource elasticity for
large-scale ML. Our basic idea is to leverage YARN’s re-
source requests and to optimize resource configurations for
a given ML program via online what-if analysis according to
program, data and cluster characteristics. We build on exist-
ing ideas from physical design tuning and introduce a novel
architecture for automatic resource optimization of large-
scale ML programs. This also includes novel program-aware
grid enumeration, pruning, and re-optimization techniques.
The major strengths of our approach are simplicity and ro-
bustness. We achieved this by (1) generating and costing
runtime plans for enumerated resource configurations, and
(2) resource re-optimization during dynamic recompilation.
In detail, we make the following technical contributions:

• Problem Formulation: After a brief background de-
scription of SystemML and resource negotiation frame-
works like YARN, we conceptually formulate the re-
source optimization problem in Section 2.

• Resource Optimizer: We introduce our cost-based re-
source optimizer in Section 3. This includes the cost
model, a search space characterization, as well as
program-aware enumeration and pruning techniques.

• Runtime Plan Adaptation: In addition, we explain how
to use this resource optimizer for runtime plan adap-
tation in Section 4. This includes extended cost esti-
mation techniques and runtime migration strategies.

• Experiments: Finally, we integrate the resource opti-
mization framework into SystemML. We describe end-
to-end results as well as optimization overhead using
a variety of use cases in Section 5.
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Figure 2: SystemML’s YARN Integration.

2. BACKGROUND AND OVERVIEW
As necessary background, we briefly describe SystemML

as a representative example of a declarative ML system
as well as YARN as a request-based resource negotiation
framework. Based on those preliminaries, we then formulate
the ML program resource allocation problem and present an
overview of our resource optimizer to solve this problem.

2.1 SystemML
SystemML [5, 20] enables declarative, large-scale ML.

Users write ML algorithms in a high-level ML scripting lan-
guage with R-like syntax, called DML. This language in-
cludes linear algebra, statistical functions, and control flow
constructs like loops and branches. These scripts are com-
piled into a hierarchy of program blocks as defined by the
control structure. Each program block is compiled into
DAGs of a high-level operators (HOP), low-level operators
(LOP), and eventually executable instructions. At HOP
level, we apply optimizations like common subexpression
elimination, algebraic simplification rewrites, and compute
operation memory estimates. These estimates reflect our in-
memory runtime that pins inputs and outputs into memory
in order to prevent repeated deserialization in operations
that access the same data multiple times. SystemML com-
piles hybrid runtime plans of in-memory CP operations and
large-scale MR operations. This decision is part of operator
selection, where we decide upon physical operators (LOPs),
apply additional rewrites, and pack MR operators of a DAG
into a minimal number of MR jobs. Finally, in case of un-
known sizes of intermediate results, we dynamically recom-
pile DAGs for runtime plan adaptation.

SystemML and similar systems are sensitive to memory.
First, operator selection of CP/MR operations is based on a
simple yet very effective heuristic. We assume that in-mem-
ory CP operations require less time than their distributed
MR counterparts and hence choose a CP operator if its mem-
ory estimate fits in the CP memory budget. Second, for
many important operations like matrix multiplication, there
are specific map-only MR operators that load one input into
the mappers. This is similar to broadcast joins in Jaql or
Hive (memory/map join) [27]. These operations are chosen
if one input fits in the MR memory budget. Appendix A
and B describe an example ML program and further de-
tails on ML program compilation, including an overview of
memory-sensitive operators and compilation steps.

Figure 2(a) shows SystemML’s integration with Apache
MapReduce v1. The control program (CP)—that drives the
overall program flow and executes in-memory operations—
runs as a Hadoop client. This client also submits MR jobs to
the job tracker if necessary. Intermediate data is exchanged
through HDFS. Default client size and map/reduce task
sizes are predefined in a static cluster configuration, and the
jobtracker is unaware of resources consumed by the client.
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2.2 YARN
YARN (Yet Another Resource Negotiator) [34, 47] aims at

improved scalability and programming flexibility for shared
clusters by providing basic resource management. Impor-
tant daemons are (1) a per-cluster Resource Manager (RM)
that monitors resource usage and node liveness and sched-
ules application resource requests, as well as (2) per-node
Node Managers (NM) that monitor local resources and
start/kill application processes. Applications provide cus-
tom Application Masters (AM) that are responsible for re-
source negotiation with the RM and per-application schedul-
ing of distributed tasks. Clients submit their applications
along with a resource request (memory, number of cores)
for the AM container to the RM. After the AM is started by
the NM on a particular node, the AM can make additional
resource container requests for distributed tasks.

As the context for this paper, Figure 2(b) shows Sys-
temML’s YARN integration. The control program (CP)
runs inside a custom AM. Similar to the MR1 integration,
the CP submits MR jobs if necessary. In YARN, this trans-
parently spawns a per-job MR AM. The client uses our pro-
posed resource optimizer to decide on the initial resource
request for the CP AM and MR tasks. Furthermore, the
CP AM also uses the resource optimizer for dynamic plan
adaptations. In contrast to MR1, this allows us to decide on
the size of CP and MR tasks as needed by an ML program.

2.3 Problem Formulation
We model an ML program P and its resource configura-

tion RP as a set of program blocks B = (B1, . . . , Bn) and
a set of resources RP = (rcP , r

1
P , . . . , r

n
P ), where rcP denotes

the resources of the master process (CP) and riP denotes
the resources of distributed computations in program block
Bi. Let cc denote a cluster configuration that contains infor-
mation about available resources and minimum/maximum
allocation constraints mincc and maxcc. Furthermore, let
C(P,RP , cc) denote a cost function that estimates the costs
of the runtime plan created for a given program (including
inputs), resources, and cluster configuration. We formulate
the related optimization problem as follows:

Definition 1. (ML Program Resource Allocation
Problem). Find the optimal resource configuration R∗P
given program P and cluster configuration cc with

R∗P = min

(
arg min

RP∈[mincc,maxcc]

C (P,RP , cc)

)
. (1)

The goal is to find the resource configuration (within
min/max constraints of the cluster) that minimizes costs for
the given program. In case of multiple resource configura-
tions RP with minimal costs, R∗P is defined as the minimum
resources in order to prevent unnecessary over-provisioning.
For comparing resource vectors, we define that Rx

P ≤ Ry
P if

and only if sum(P,Rx
P , cc) ≤ sum(P,Ry

P , cc), where sum()
is the time-weighted sum of used resources.

Problem Instantiations: There are many instantia-
tions to this problem. For request-based resource allocation
as used in YARN, we use memory mc

P as resource rcP and
directly request the optimal resources R∗P . For offer-based
resource allocation as used in Mesos, we are also interested
in the optimal resource allocation R∗P but have additional
optimization decisions in case of non-matching offers.
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Figure 3: SystemML Resource Optimizer.

2.4 Resource Optimizer Overview
At a high level, we use an online what-if analysis to com-

pute near-optimal resource configurations for a given ML
program. Our design decision of an independent resource
optimizer aims at robustness. This design ensures simplicity
and maintainability at the cost of additional optimization
overhead and missing optimality guarantee. However, as we
shall show, even lightweight compiler interactions allow for
program-aware resource optimization, which achieves both
robustness and near-optimal plans with low overhead.

Resource Optimizer Architecture: Figure 3 shows
the general architecture of our resource optimizer. In the
first step, the optimizer obtains the cluster information cc
from the RM. This includes min/max memory constraints,
number of nodes/cores, and more specific configurations like
HDFS block size. In the second step, we let the compiler gen-
erate the HOP representation of the input program P . We
obtain basic program information such as the program struc-
ture B and memory estimates from this representation. The
resource optimizer then uses grid enumeration and pruning
strategies to find a near-optimal resource configuration (step
3-6). For each enumerated resource configuration, we mod-
ify the memory budgets of the compiler, generate the LOP
DAG and runtime program, and use the cost model to com-
pute a time estimate. Doing cost estimation on runtime
programs is important for robustness because it automati-
cally takes all optimization phases of the entire compilation
chain into account. This enumeration process is repeated
until we have systematically evaluated the search space or
a budget of optimization time is exceeded. Finally (step 7),
we request the AM memory that resulted in minimal costs.

Resource Optimizer Use Cases: Our resource opti-
mizer has two major purposes (see Figure 2(b)). First, we
employ this resource optimizer for initial resource optimiza-
tion before the client submits the application to the RM.
Second, we use the same optimizer for runtime resource op-
timization in terms of runtime plan adaptation if sizes of in-
termediates are initially unknown or changing. In the follow-
ing two sections, we describe the details of the core resource
optimizer and extensions for runtime plan adaptation.

3. INITIAL RESOURCE OPTIMIZATION
We now describe the core resource optimizer as used for

initial resource optimization. This includes the cost model
and search space, as well as grid enumeration and pruning.

3.1 Cost Model
As a fundamental building block for cost-based resource

optimization, we need a cost model and accurate estimates.
Our basic idea is to use a white-box cost model based on
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generated runtime plans, because the runtime plan automat-
ically reflects all independent optimization phases. A more
detailed discussion with examples can be found in [4]. We
define the costs C(P,RP , cc) as estimated execution time of
the runtime plan generated for P given the resourcesRP and
cluster configuration cc. This time-based model allows us to
reflect IO, compute, and latency at the same time. In con-
trast to related work of MR job tuning [18, 21, 43] and MR
progress indicators [33], this approach gives us an analytical
cost model for entire ML programs. This model is able to
cost alternative physical runtime plans without the need for
black-box sample runs or in-progress plan execution.

Time Estimates: In detail, time estimation works as fol-
lows. As essential foundation, we use input and intermediate
result sizes as inferred and compiled into the runtime plan
(if known during compilation). We scan the runtime plan in
execution order and track sizes and states of live variables.
An in-memory operation changes the state of its inputs and
output to in-memory. The time estimate of a CP instruc-
tion consists of IO and compute time. We estimate IO time
based on variable state, size, format, and default format-
specific read/write bandwidths, while we estimate compute
time based on size, operation-specific number of floating
point operations, and default peak performance. The time
estimate of an MR-job instruction is more complex: it con-
sists of job and task latency, in-memory variable export, map
read, map compute, map write, shuffle, reduce read, reduce
compute, and reduce write times, and it can refer to multi-
ple map/reduce instructions that are packed into the same
job. Both IO and compute of map/reduce tasks are divided
by the map/reduce degree of parallelism as inferred for this
particular MR-job instruction, where we take the CP/MR
resources into account when computing the resulting degree
of parallelism. Finally, we aggregate time estimates along
the program structure. For conditional branches, the aggre-
gate is a weighted sum of time aggregates. For loops, we
scale the time aggregate by the number of iterations; if the
number of iterations is unknown we use a constant which at
least reflects that the body is executed multiple times.

3.2 Search Space
As a basis for our discussion of enumeration strategies,

we characterize essential properties of the underlying search
space. We use the notion of a resource dependency for inter-
related cost influences of resources. Furthermore, we make
a simplifying assumption of semi-independent resources, i.e.,
that MR resources of different program blocks are indepen-
dent. This is a reasonable assumption because the dependen-
cies are indeed very weak: MR resources affect the choice of
physical operators and hence the execution location, which
might influence the number of output files and thus affects
data-dependent program blocks. However, this effect is usu-
ally negligible and not considered by the cost model.

Key Properties: Figure 4 shows the resulting resource
dependencies between CP resources rcP and the set of MR
resources (r1P , . . . , r

n
P ). For SystemML, this dependency is

Algorithm 1 optimizeResourceConfig

Require: program P , cluster info cc, enum type1, type2
1: Src ← enumGridPoints(P, cc, type1,asc)
2: Srm ← enumGridPoints(P, cc, type2,asc) // 3.3.2
3: R∗P ← ∅ // init best resource vector
4: C∗ ←∞ // init best program cost
5: for all rc ∈ Src do // for each CP memory rc

6: B ← compileProgram(P,RP = (rc,mincc))
7: B′ ← pruneProgramBlocks(B) // 3.4
8: memo← (mincc, C(B))
9: for all B′i ∈ B′ do // in parallel, Appx C

10: for all ri ∈ Srm do // for each MR memory ri

11: Bi ← recompile(Bi,RP = (rc, ri))
12: if C(Bi) < memo[i, 2] then // found better ri

13: memo[i, ]← (ri, C(Bi))
14: P ← recompile(P,RP = (rc,memo[, 1]))
15: if C(P ) < C∗ then // found better R∗P
16: R∗P ← (rc,memo[, 1])
17: C∗ ← C(P )
18: return R∗P // resource vector w/ best costs

very strong because the CP memory determines which oper-
ations are scheduled to MR and thus can change the scope
and impact of riP . This particular dependency structure
leads to the following two key properties:

• Monotonic Dependency Elimination: The CP memory
rcP exhibits monotonic impact on dependencies. If the
compiler decided for rcP to execute all operations of
block Bi in CP, this eliminates the dependency to riP .
Increasing rcP does not reintroduce this dependency.

• Semi-Independent 2-Dim Problems: For a given CP
resource rcP , the resource configurations of riP and
ri+1
P are independent. This leads to a partitioning

of RP = (rcP , r
1
P , . . . , r

n
P ) into n semi-independent 2-

dimensional problems ((rcP , r
1
P ), . . . , (rcP , r

n
P )), which

exhibit a global equality constraint on rc.

We will exploit these properties for pruning and paral-
lelization. The property of semi-independent problems also
leads to a linear optimization time in the number of program
blocks, which is important for large ML programs.

3.3 Grid Enumeration Strategies
Due to the goal of simplicity and robustness, we aim to

keep our core enumeration algorithm independent of specific
rewrites and optimization techniques. For this reason, we
discretize the continuous search space and use basic grid
enumeration strategies. In the following, we introduce the
overall enumeration algorithm and different techniques for
generating grid points via systematic and directed search.

3.3.1 Overall Grid Enumeration Algorithm
The input to our algorithm is the ML program P (includ-

ing input data characteristics), the cluster configuration cc,
and the types of grid point generators for the two dimensions
of resources we are interested to decide upon. In general, the
algorithm aims at solving the ML program resource alloca-
tion problem as defined in Definition 1. Finally, the output
is the minimal resource configuration R∗P with minimal cost.

Algorithm 1 shows our overall enumeration algorithm. We
first materialize ascending grid points per dimension with
the chosen grid point generators (lines 1-2). In addition,
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we initialize R∗P as the best resource vector and C∗ as the
globally best program cost (lines 3-4). Due to the property
of semi-independent problems, the outer loop iterates over
all enumerated grid points for CP memory rc (line 5). In
each iteration, we compile the program P according to the
resources (rc,mincc). This compilation serves as baseline
compilation for the given rc value and unrolls the program
P into the set of program blocks B (line 6). Based on this
compilation, we can access basic information—such as the
number of MR jobs—per program block according to the
given rc. This information now allows us to prune all pro-
gram blocks whose costs are guaranteed to be independent
of MR resources (line 7, see Subsection 3.4). Thus, pruning
prevents unnecessary enumeration, compilation and costing
for the ri dimension. For all remaining program blocks B′,
we evaluate the second dimension according to the current rc

memory budget (lines 8-10). This evaluation employs a sim-
ple memoization structure memo, which is an n× 2 matrix,
where the ith row refers to program block Bi, the first col-
umn represents resources ri, and the second column related
costs C(Bi, r

i). For each triple of (rc, Bi, r
i), we recompile

the program block, cost the generated partial runtime plan
and update the memo structure if we found a better ri con-
figuration (lines 11-13). After enumerating all points of the
second dimension, we have found the best ri for each pro-
gram block Bi given a fixed rc value. We then compile the
entire program according to the memoized resource vector
(line-14) in order to take the overall control structure like
loops into account when estimating the total costs. This cost
estimate is used to compare and update the globally best re-
sources and costs (lines 15-17). Finally, we return R∗P , as
the resource configuration with minimal costs (line 18).

3.3.2 Grid Point Generators
In this algorithm, the chosen strategy for enumerating grid

points per dimension is important for finding near-optimal
plans with low overhead. We now discuss alternative strate-
gies, all of which are bounded by mincc and maxcc.

Equi-Spaced Grid: As a first strategy, we use an equi-
spaced grid with fixed-size gaps g between points per di-
mension as shown in Figure 5(a). In case of a fixed num-
ber of points m per dimension, we compute g by g =
(maxcc − mincc)/(m − 1); otherwise, we use g = mincc.
Equi-spaced enumeration allows for a systematic evaluation
of the search space without fundamental assumptions and
without danger of missing large areas of resource configu-
rations. The finer the grid granularity, the more likely we
find the optimal resource configuration but we cannot give
an optimality guarantee because the actual optimum might
be in between points. However, in practice even 15 to 45
points per dimension are enough to find near-optimal plans.

Exp-Spaced Grid: Our second strategy aims to reduce
the number of points without affecting the allocation quality.
A common observation is that for small resource configura-
tions, we see more frequent plan changes than for large con-
figurations. Our exp-space grid exploits this observation by
exponentially increasing gaps g between points as shown in
Figure 5(b). The ith gap is computed by gi = wi−1 ·mincc,
where by default we use w = 2. This exp-spaced grid only re-
quires a logarithmic number of points, while the equi-spaced
grid requires a linear number of points. Especially in clus-
ter environments with large maxcc constraint, this signifi-
cantly reduces the number of generated points. However,
this strategy can be too coarse-grained for extending the
mapper memory without hurting the degree of parallelism.

Memory-Based Grid: While both the equi-spaced and
exp-spaced grid are independent of the ML program at hand,
our third strategy additionally exploits program-specific
characteristics. A key observation is that plan changes often
occur at resource configurations equal to the memory esti-
mates of operations. Our memory-based grid strategy ac-
cordingly leverages the memory estimates of the compiler as
shown in Figure 5(c). We still want to discretize the search
space and hence combine this with the equi-spaced grid. In
detail, whenever there exists a memory estimate between
two grid points, we enumerate both left and right points.
For memory estimates outside the mincc and maxcc con-
straints, we fall back to these extreme values. In the worst-
case (where memory estimates are spread across the entire
search space), this strategy is equivalent to the equi-spaced
grid. However, this strategy is now aware of the input pro-
gram and its data. Different data leads to different memory
estimates and thus different enumerated grid points. This
approach allows a more directed search. There are, how-
ever, also counterexamples where enumeration solely based
on memory estimates will not produce the best plan. For
example, consider two large matrix multiplications X v and
X w; in order to pack them into one MR job for scan sharing
of X, both v and w together need to fit in the mapper mem-
ory. Decisions like this are not captured by the individual
operation memory estimates. We currently use the memory
estimates of all program blocks to materialize a single grid
for all program blocks (see Algorithm 1, line 2).

Composite Grids: These basic grid generators can now
be used to create composite grid generators. First, we can
select different generators for each dimension. The resulting
grid is defined by the cross product of points per dimension.
Second, we can compose one-dimensional generators with a
simple union. For example, our default hybrid grid enumer-
ation strategy uses for both dimensions an overlay of (1) the
memory-based grid and (2) the exp-spaced grid in order to
combine both directed and systematic search.
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Discussion on Gradient-Based Methods: We could
view the two dimensional problems as general optimiza-
tion problems and apply gradient-based methods. However,
these methods do not apply here because it is not a convex
optimization problem. Different resource configurations can
result in the same plan and thus the same costs. These cost
plateaus would lead to gradients of 0. In addition, the high
impact of resource configurations motivated us to rather rely
on a systematic, compiler-assisted search space exploration.

3.4 Pruning Techniques
Independent of the chosen grid enumeration strategy, we

apply simple yet very effective pruning techniques.
Pruning Blocks of Small Operations: We can exploit

the search space property of monotonic dependency elimina-
tion for additional pruning. As a precondition for pruning,
for each rc value, we compile the entire program with mincc

as baseline. Whenever, a program block does not contain
any MR jobs, the second dimension of MR memory is irrel-
evant and can be pruned. Furthermore, if a program block
does not contain any MR jobs for rc1, it will not reintroduce
them for a larger CP memory rc2 > rc1. This fact leads to
pruning of entire areas as shown in Figure 5(d). An im-
portant resulting property of this grid pruning is that the
number of pruned points depends on the data size. The
smaller the data, the earlier every operation fits in mem-
ory and we can prune the second dimension. This property
is important for small relative optimization overhead. For
small data (where execution time is likely small), we prune
more points and thus have very small overhead; for larger
data, we prune fewer points, but the higher optimization
overhead is justified by higher expected execution time.

Pruning Blocks of Unknowns: Pruning blocks of small
operations works very well if sizes of intermediates can be
inferred. However, if inference is not entirely possible, even
a single unknown operation per block prevents the pruning
of the second dimension of this block. One key observation is
that if we are not able to infer intermediate sizes, often entire
blocks become unknown. Clearly, if sizes and hence mem-
ory estimates are unknown, we will not find different plans
with different costs. We exploit this property by pruning all
blocks where all MR operations have unknown dimensions.

4. RUNTIME RESOURCE ADAPTATION
Optimizing resource configurations via online what-if

analysis fundamentally depends on size inference over the
entire ML program. Sizes of intermediate results—in terms
of dimensions and sparsity—are important for memory es-
timation, plan generation, and thus cost estimation. Even
with advanced strategies for size propagation and memory
estimation, there are fundamental challenges that ultimately
lead to unknowns and hence the need for runtime plan
adaptation. Examples are (1) conditional size and sparsity
changes, (2) user-defined functions with unknown output
sizes, and (3) data dependent operations. For instance, the
following contingency-table/sequence statement—as used
for multinomial logistic regression—takes the multi-valued
n × 1 label vector y and creates a boolean n × k indicator
matrix Y, where k is the number of categories (classes).

1: Y = table( seq(1,nrow(X)), y );

The size of this intermediate Y determines the size of the
gradient and thus affects operations on X. Without looking
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Figure 6: Overview Runtime Resource Adaptation.

at the data of y, memory estimates are extremely overes-
timated. Based on all these unknowns, the initial resource
optimization might not have created a near-optimal configu-
ration. However, as we execute the ML program, unknowns
like data sizes and sparsity become known and can be ex-
ploited for runtime plan adaptation. This shares common
goals with adaptive query processing [16]. From a runtime
perspective, adjusting the memory configuration of state-
less jobs or reducing the CP AM memory are trivial, while
increasing this memory requires obtaining a new container
and hence needs state migration, potentially to a container
running on a different node. In this section, we describe
our simple and robust approach for runtime adaptation. We
give an overview of resource adaptation, as well as details
on runtime migration support, and optimizer extensions for
when and how to reoptimize resource configurations.

4.1 Overview and Runtime Migration
Our basic approach for runtime adaptation is integrated

with our default dynamic recompilation [5] at the granu-
larity of last-level program blocks. If a block is subject to
dynamic recompilation and if after dynamic recompilation
at least one MR job exits, we trigger our runtime resource
optimization. The intuition is as follows: The common case
of adaptation is to extend the AM memory, because opera-
tions do not fit in the current memory budget, which leads
to spawning unnecessary MR jobs. Furthermore, the latency
of an MR job covers potential optimization overheads.

Resource Reoptimization: As shown in Figure 6, run-
time adaptation has four steps. First, we determine the
program scope of re-optimization. Second, we leverage the
previously described resource optimizer to find the optimal
resource configuration, where we always update MR config-
urations. Third, we decide on runtime adaptation if the cost
benefit of the new configuration amortizes the estimated mi-
gration costs. Fourth, if beneficial, we migrate the current
AM runtime and resume execution in the new container.

AM Runtime Migration: Efficient runtime migration
is a necessary precondition for any related optimization de-
cisions. At a high level, our runtime migration relies on
AM process chaining, which allows for transparent runtime
resource adaptation, invisible to the client. Assume we de-
cided to migrate the current CP runtime. The current AM
first requests a new container according to the new CP re-
sources. Then, we materialize the current runtime state.
This state comprises the current position of execution as
well as the stack of live variables. We currently store the
state on HDFS, but in-memory transfer is possible as well.
In detail, we write all dirty variables, i.e., all variables whose
state differs from its HDFS representation. Furthermore, we
also write the current position and the new resource configu-
ration. Once the new runtime container is started, we com-
pile the original script according to the new configuration,
restore the stack of live variables, jump to the current po-

142



sition and resume execution. Note that export and restore
of variables happens transparently through our buffer pool.
This simple approach is safe because all our operators and
UDFs are stateless and—due to migration at program block
boundaries—all intermediates are bound to logical variable
names. Finally, as soon as the program finishes, the chain
of AM processes is rolled-in, in reverse order.

Discussion on Robustness: At this point, another ad-
vantage of our what-if resource optimizer becomes obvious.
We do not need to serialize execution plans but can pass
the original script. Any recompilation of the original script
according to the new resource configuration leads to exactly
the same plan (after recompilation) as the resource optimizer
has found during optimization. Furthermore, keeping the
entire chain of AM processes alive might seem like large un-
necessary resource consumption. However, in practice this
works very well because the chain usually contains just two
processes and the initial process is often small.

4.2 Re-Optimization Scope and Decisions
Resource re-optimization is part of dynamic recompila-

tion. Despite low optimization overhead, it is prohibitive to
execute resource optimization for every program block, be-
cause this might add relatively large overhead and requires
a larger scope to be effective. Hence, we apply resource op-
timization only if dynamic recompilation compiled MR jobs.

Re-Optimization Scope: Determining a large program
scope P ′ for resource reoptimization aims to prevent local
decisions where the migration costs might not be amortized
or might lead to multiple runtime migrations. Recall that
recompilation works on last-level program blocks. Starting
there, our heuristic is to expand the scope from the current
position to the outer loop or top level in the current call
context (main or current function) to the end of this con-
text. The intuition is that this covers most iterative scripts,
where—at least within loops—dimensions do not change.

Example Re-Optimization Scope: In our example of
multinomial logistic regression, the number of classes k de-
termines the size of intermediates. For example, assume a
107 × 102 input matrix X. On dense data, the memory re-
quirement of below matrix multiplications is 8 GB for k = 2
classes, but 24 GB for k = 200 classes. Dynamic recompila-
tion is triggered on last-level program blocks, i.e., lines 3 and
5. We extend the re-optimization scope to the entire outer
while loop in order to (1) account for repeated execution,
and (2) prevent unnecessary repeated runtime migrations.

1: while( !outer_converge ) { ...

2: while( !inner_converge ) { ...

3: Q = P[, 1:k] * X %*% V;

4: }

5: grad = t(X) %*% (P[, 1:k] - Y[, 1:k]);

Extended Resource Optimization: Resource opti-
mization then reuses our core resource optimizer with one
extension. Instead of returning the optimal resource config-
uration, we return both the globally optimal resources R∗P
and the locally optimal resource R∗P |rc, given the current rc

configuration. The latter is used for cost comparison and as
resource configuration if we decide against migration.

Adaptation Decision: We extend our cost model to
compute the benefit of migration ∆C = C(P ′,R∗P ) −
C(P ′,R∗P |rc) (i.e., ∆C ≤ 0) and the migration costs CM .
Migration costs are defined as the sum of IO costs for live
variables and latency for allocating a new container. If the

migration costs CM are amortized by ∆C, we migrate as
described in Subsection 4.1; otherwise we use R∗P |rc as the
new configuration but continue in the current AM container.

5. EXPERIMENTS
Our experiments study the behavior of automatic resource

optimization for a variety of representative use cases. We
aim to understand end-to-end optimization potential as well
as to quantify the efficiency and effectiveness of enumeration
strategies. To summarize, the major findings are:

End-To-End Improvements: Our resource optimizer
found in most cases near-optimal configurations. The im-
provements are significant due to reduced MR-job latency
for mid-sized data and more scalable plans for large data.
Avoided over-provisioning also led to good throughput.
Sources of suboptimality are buffer pool evictions (only par-
tially considered by our cost model) and unknown data sizes.

Optimization Overheads: On the tested variety of ML
programs and data sizes, the optimization overhead was very
low. However, both grid enumeration and pruning strategies
are crucial to accomplish that, especially for larger ML pro-
grams. Parallel optimization (see Appx C) achieved addi-
tional improvements but is currently of no crucial necessity.

Runtime Resource Adaptation: Re-optimization and
runtime migration are crucial for ML programs with initial
unknowns. The end-to-end improvements are large, while
the overhead of runtime migration is low. On the tested ML
programs, only up to two migrations were necessary.

5.1 Experimental Setting
Cluster Setup: We ran all experiments on an 1+6 node

cluster, i.e., one head node of 2x4 Intel E5530 @ 2.40 GHz-
2.66 GHz with hyper-threading enabled and 64 GB RAM, as
well as 6 nodes of 2x6 Intel E5-2440 @ 2.40 GHz-2.90 GHz
with hyper-threading enabled, 96 GB RAM, 12x2 TB disk
storage, 10Gb Ethernet, and Red Hat Enterprise Linux
Server 6.5. We used Hadoop 2.2.0 and IBM JDK 1.6.0 64bit
SR12. YARN’s RM was configured with min/max alloca-
tion constraints of 512 MB and 80 GB, respectively; the NMs
were also configured with resources of 80 GB. Whenever we
configure a specific heap size, we set equivalent max/initial
heap sizes and we request memory of 1.5x the max heap size
in order to account for additional JVM requirements. Our
HDFS capacity was 107 TB (11 disks per node), and we used
an HDFS block size of 128 MB. Finally, we used SystemML
(as of 10/2014) with defaults of 12 reducers (2x number of
nodes) and a memory budget of 70% of the max heap size.

ML Programs and Data: In order to study the behav-
ior of resource elasticity in various scenarios, we use five ML
programs and generated both dense and sparse data of differ-
ent dimensions. Table 1 gives an overview of the characteris-
tics and script-level parameters of these ML programs. Note
that we use full-fledged scripts that also compute various ad-
ditional statistics such as residual bias etc. The number of
lines and program blocks are indicators of the program size,
which affects the optimization overhead. Two scripts exhibit
unknown dimensions during initial compilation (’?’). The
other attributes refer to script-level configurations: icp is a
switch for computing model intercept and scale/normalize
the base data, λ refers to a regularization constant, ε to
the convergence tolerance, and maxi to the max number of
iterations. This table also shows basic characteristics: Lin-
reg DS (direct solve) is non-iterative, Linreg CG (conjugate
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Table 1: Overview ML Program Characteristics.
Prog. #Lines #Blocks ? Icp. λ ε Maxi.

LinregDS 209 22 N 0 0.01 N/A N/A
LinregCG 273 31 N 0 0.01 10−9 5
L2SVM 119 20 N 0 0.01 10−9 5/∞
MLogreg 351 54 Y 0 0.01 10−9 5/5
GLM 1,149 377 Y 0 0.01 10−9 5/5

gradient) has a single loop, while the remaining scripts—
L2SVM (L2-regularized support vector machine), MLogreg
(multinomial logistic regression), and GLM (generalized lin-
ear model, poisson/log)—use nested loops for overall con-
vergence and finding the optimal update per iteration. As
test data, we use scenarios of XS (107 cells), S (108 cells),
M (109 cells), L (1010 cells), and XL (1011 cells) data size
with different number of columns (1,000/100) and sparsity
(1.0, 0.01). The number of rows is #cells/#cols. All experi-
ments use binary input data. For dense data, these scenarios
correspond to 80 MB, 800 MB, 8 GB, 80 GB, and 800 GB.

Baseline Comparisons: To the best of our knowledge,
SystemML is the first declarative ML system that automat-
ically optimizes resource configurations. Hence, we compare
against baselines with static resource configurations, which
use exactly the same YARN runtime integration as our re-
source optimizer. In detail, we use max CP/MR heap size
configurations of 512 MB/512 MB (B-SS), 53.3 GB/512 MB
(B-LS), 512 MB/4.4 GB (B-SL), and 53.3 GB/4.4 GB (B-LL).
The reasoning is that 512 MB is a minimum container re-
quest, 53.3 GB a maximum container request (53.3 GB·1.5 ≈
80 GB), and 4.4 GB is the maximum task container size that
allows to exploit all 12 physical cores and disks per node
(12 ·4.4 GB ·1.5 ≈ 80 GB). Appx D also provides a runtime-
level comparisons with SystemML’s runtime on Spark.

5.2 End-to-End Baseline Comparison
In a first series of experiments, we investigate the end-

to-end runtime improvement with optimized resource con-
figurations compared to the described baselines. The pur-
pose is to study the effectiveness of initial resource opti-
mization, and hence we disable runtime resource adapta-
tion for the moment. We report end-to-end client elapsed
time, which already includes optimization overhead and
read/write from/to HDFS. Since we aim for generality, we
show how our optimizer behaves over a variety of scenarios.

Figure 7 shows the overall baseline comparisons of initial
resource optimization (Opt) on Linreg DS. A summary of
the found resource configurations is shown in Table 2, where
we report CP and max MR sizes. Overall we see that Opt

achieves in all scenarios an execution time close to the best
baseline; in some cases even better performance. It is impor-
tant to note that on different scenarios, different baselines
perform best. There are several interesting observations:

First, Figure 7(a) shows the results for XS-L on dense1000
which is a compute-intensive use case. For scenario S
(800 MB), we see that small CP sizes perform worse be-
cause the MR job latency is not amortized. However, for

Table 2: Opt Resource Config, Linreg DS, [GB].
Scenario B-LL (a) (b) (c) (d)

XS 53.3/4.4 0.5/2 0.5/2 0.5/2 0.5/2
S 53.3/4.4 8/2 0.5/2 8/2 0.5/2
M 53.3/4.4 0.5/2 1/2 0.5/2 4/2
L 53.3/4.4 0.5/2 8/2 8/2 26.9/2
XL 53.3/4.4 8/2 8/2 53.4/12.8 22.7/12.8

1e+04 1e+05 1e+06 1e+07

B−SS
B−LS
B−SL
B−LL
Opt

Ex
ec

ut
io

n 
Ti

m
e 

[s
]

50

100

150

200

250

300

350

# of Rows

(a) Dense, # of Cols=1,000

1e+04 1e+05 1e+06 1e+07

B−SS
B−LS
B−SL
B−LL
Opt

Ex
ec

ut
io

n 
Ti

m
e 

[s
]

0

20

40

60

80

100

120

140

# of Rows

(b) Sparse, # of Cols=1,000

1e+05 1e+06 1e+07 1e+08

B−SS
B−LS
B−SL
B−LL
Opt

Ex
ec

ut
io

n 
Ti

m
e 

[s
]

0

100

200

300

400

500

600

# of Rows

(c) Dense, # of Cols=100

1e+05 1e+06 1e+07 1e+08

B−SS
B−LS
B−SL
B−LL
Opt

Ex
ec

ut
io

n 
Ti

m
e 

[s
]

0

50

100

150

200

250

# of Rows

(d) Sparse, # of Cols=100

(a) dense1000 (b) sparse1000 (c) dense100 (d) sparse100

B−SS
B−LS
B−SL
B−LL
Opt

Ex
ec

ut
io

n 
Ti

m
e 

[s
]

2000

4000

6000

8000

10000

Scenario

(e) Scenario XL (all dense/sparse scenarios)

Figure 7: Experiments Linreg DS: Scenarios XS-XL.

scenario M (8 GB), small CP sizes perform 4x better than
pure single node computations because the small CP sizes
forced distributed runtime plans. B-SS is slower than B-SL

because the small MR tasks caused too many concurrent
tasks and hence cache trashing. Opt found very good plans
in those scenarios. On scenario L (80 GB), we see that all
baselines perform worse than Opt because they either use
too few or too many tasks while our optimizer adjusts the
number of tasks via a minimum task size based on the num-
ber of available virtual cores. Second, Figures 7(b) and 7(d)
show the results of the sparse1000 and sparse100 scenar-
ios where usually in-memory operations perform best. Opt

also finds that plan with slightly worse performance due to
more buffer pool evictions because of the smaller heap size.
Third, Figure 7(c) shows the dense100 case which, in con-
trast to dense1000, is less compute-intensive and hence there
are smaller differences. However, on L (80 GB) both large
CP (for several vector operations) and large task sizes are
important. Opt found these configurations and performed
slightly better than B-LL because of no unnecessary over-
provisioning which also limits the degree of parallelism.

Figure 7(e) shows the results of Linreg DS on scenario XL,
which is 800 GB in dense and hence twice as large as aggre-
gate cluster memory. For dense1000, we see again substan-
tial improvements because, despite the good IO subsystem,
the right plan (without large shuffling) really matters. Opt

finds the best plan and is faster than B-LL due to a higher
degree of parallelism. On dense100, Opt selects a plan with
13 GB tasks which cannot be chosen by the baselines. How-
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Figure 8: Experiments Linreg CG: Scenarios XS-L.

1e+04 1e+05 1e+06 1e+07

B−SS
B−LS
B−SL
B−LL
Opt

Ex
ec

ut
io

n 
Ti

m
e 

[s
]

0

200

400

600

800

1000

1200

1400

# of Rows

(a) Dense, # of Cols=1,000

1e+04 1e+05 1e+06 1e+07

B−SS
B−LS
B−SL
B−LL
Opt

Ex
ec

ut
io

n 
Ti

m
e 

[s
]

0

100

200

300

400

500

# of Rows

(b) Sparse, # of Cols=1,000

1e+05 1e+06 1e+07 1e+08

B−SS
B−LS
B−SL
B−LL
Opt

Ex
ec

ut
io

n 
Ti

m
e 

[s
]

0

1000

2000

3000

4000

5000

# of Rows

(c) Dense, # of Cols=100

1e+05 1e+06 1e+07 1e+08

B−SS
B−LS
B−SL
B−LL
Opt

Ex
ec

ut
io

n 
Ti

m
e 

[s
]

0

500

1000

1500

2000

2500

3000

# of Rows

(d) Sparse, # of Cols=100

Figure 9: Experiments L2SVM: Scenarios XS-L.

ever, these large tasks reduce the degree of parallelism and
thus are only moderately faster. The sparse cases are signif-
icantly faster but again Opt found a near-optimal plan. In
all these scenarios, the optimization overhead was negligible
because even on XL, after pruning only 3 blocks remained.

Figures 8-11 show the results for the remaining four ML
programs on scenarios XS-L. There are three takeaways.
First, on scenarios S and M, a larger CP memory usually
leads to significant improvements, where Opt automatically
finds these configurations. More iterations would lead to
even higher improvements because the initial read is better
amortized. Second, for scenario L, both CP and MR mem-
ory budgets matter, where Opt found again near-optimal
configurations. Third, unknowns are a major problem. This
applies to MLogreg and GLM. For all dense scenarios M,
Opt was not able to find the right configuration here due to
unknowns in the core loops. Sometimes, few known opera-
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Figure 10: Experiments MLogreg: Scenarios XS-L.
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Figure 11: Experiments GLM: Scenarios XS-L.

tions act as guards to find good plans. However, we address
this problem in a principled way with CP migration.

5.3 Throughput
In another series of experiments, we investigate our sec-

ondary optimization objective, namely preventing unneces-
sary over-provisioning. We aim to quantify the effect of
over-provisioning via throughput experiments because the
allocated resources per application directly affect the max-
imum number of parallel applications (users). We compare
Opt with B-LL which was the most competitive baseline from
an end-to-end runtime perspective. To measure throughput,
we created a multi-threaded driver that spawns client pro-
cesses at the head node. Each driver thread represents a
user and each client process an application. We varied the
number of users |U | ∈ [1, 128], where each user is running
8 applications in order to account for setup and tear down.
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Figure 12: End-to-End Throughput Comparison.

The reported throughput is measured as total number of
applications divided by total driver execution time.

Figures 12(a) and 12(b) show the results for Linreg DS,
scenario S, dense1000 and L2SVM, scenario M, sparse100,
respectively. Our resource optimizer decided for 8 GB/2 GB
and 4 GB/2 GB memory configurations, while B-LL always
used 53.3 GB/4.4 GB. Given the described cluster allocation
constraints, this led to a maximum application parallelism
of 6 ·b80 GB/(1.5 ·8 GB)c = 36 and 78 for Opt as well as 6 for
B-LL. For this reason, there are no differences up to 4 users;
but from 8 users onwards, we see increasing improvements.
For B-LL, the throughput saturates at 6, while for Opt, it
saturates according to the found memory configurations at
36 and 78 users. Similar but less significant effects can also
be observed for larger scenarios including MR jobs.

5.4 Optimization Overhead
In a third series of experiments, we investigate the effi-

ciency of our resource optimizer in terms of optimization
overhead. Since grid enumeration and pruning techniques
are largely orthogonal, we examine them individually and
subsequently report the overall optimization times.

Grid Enumeration Strategies: Our overall algorithm
materializes grid points per dimension and enumerates the
cross product of those points. Since grid generators can
be arbitrarily combined, we compare the different strategies
with regard to one dimension. Figure 13 shows the number
of generated points for the scenarios XS-XL of Linreg DS,
dense1000. The cluster constraints were mincc=512 MB and
maxcc = 53.3 GB. We compare the equi-spaced grid (Equi),
exponentially-spaced grid (Exp), memory-based grid (Mem),
and our composite hybrid grid (Hybrid), where both Equi

and Mem rely on a basic grid. First, Figure 13(a) compares
those strategies on a grid of m=15 points. Obviously, Equi
and Exp are independent of the input data size, where Exp

requires only 8 instead of 15 points. Mem (and thus also
Hybrid) depends on the input data and often requires only
few points. For small data, all memory estimates are below
mincc and hence mincc constitutes the only point. With
increasing data size, we get more points (5 at 8 GB); if the
data size exceeds maxcc, some estimates are truncated at
maxcc and hence usually we get fewer points. Second, Fig-
ure 13(b) shows the results for m=45 points which leads to
a larger difference between Equi and Exp. In addition, we
see slightly more points for Mem due to smaller bin sizes. To
summarize, our default strategy Hybrid naturally adapts to
the problem, has good coverage but requires only few points
which is important due to the resulting squared grid.

Pruning Strategies: Pruning of program blocks is of
crucial importance to our algorithm because it significantly
reduces the search space by eliminating the entire second di-
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Figure 13: Comparison of Grid Generators.
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Figure 14: Effect of Block Pruning Strategies.

mension of each pruned block. Figure 14 shows the percent-
age of remaining blocks after pruning for all ML programs
on dense, #Cols=1,000 data. We see that pruning blocks
of small operations is highly beneficial. However, without
pruning unknowns, both MLogreg and GLM would have a
constant offset of 14 and 64, regardless of the actual data
size which would really hurt for small scenarios.

Overall Optimization Overhead: To summarize, we
now report the optimization times for all used ML programs
on use case dense1000. Table 3 shows for the different pro-
grams and scenarios, the number of block recompilations,
the number of cost model invocations, the optimization time,
and the relative overhead regarding total execution time.
Note that costing the entire program is counted as a single
cost model invocation, and we used Hybrid, m=15 for both
dimensions as well as sequential enumeration as used for our
previous baseline comparisons. Appendix C reports further
results on parallel resource optimization. Most algorithms
require a very low optimization time, except GLM which is a
very complex ML program with |B| = 377 program blocks.

Table 3: Optimization Details Dense1000.
Prog. Scen. # Comp. # Cost. Opt. Time %

XS 352 8 0.35s 3.5
LinregDS S 417 30 0.41s 1.0

M 678 168 0.71s 0.8
L 448 104 0.56s 0.2
XL 536 149 0.73s <0.1
XS 496 8 0.43s 7.2

LinregCG S 558 9 0.47s 3.3
M 924 192 0.88s 2.2
L 640 152 0.66s 0.1
XS 320 8 0.36s 6.0

L2SVM S 360 9 0.41s 4.1
M 660 192 0.85s 1.8
L 464 152 0.71s <0.1
XS 1,188 11 0.99s 7.1

MLogreg S 1,476 299 1.91s 0.8
M 2,148 650 2.89s 0.8
L 1,540 363 2.07s 0.2
XS 8,294 11 4.56s 35.1

GLM S 8,518 235 5.78s 13.8
M 11,576 1,034 11.17s 2.4
L 8,998 715 9.24s 0.7
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Figure 15: End-to-End Baseline Comparisons with
Runtime Plan Adaptation for MLogreg and GLM.

5.5 Runtime Plan Adaptation
Unknown size and sparsity of intermediate results is a ma-

jor issue, where initial resource optimization systematically
leads to suboptimal choices. This problem of unknowns ap-
plies to MLogreg and GLM. We now study the benefits of
runtime resource adaptation as introduced in Section 4.

Figure 15 shows the end-to-end comparison results of the
ML programs MLogreg and GLM with enabled runtime re-
source adaptation. We compare again total elapsed time
of baseline B-LL, our resource optimizer without adaptation
(Opt), and with adaptation (ReOpt). We also annotated the
number of runtime migrations. First, Figure 15(a) shows
the results on scenario S (800 MB in dense). For this small
case, we see high benefits of adaptation because eliminat-
ing the unnecessary MR job latency has high impact due to
the small data size. Even a single runtime migration was
sufficient to come close to the best baseline. Furthermore,
there was no negative impact on use cases where no adap-
tation was required. It is noteworthy that GLM did not
require any adaptation on this scenario because for example
on dense1000, costs of a few known operations led to an ini-
tial CP size of 2 GB while for MLogreg the initial CP size
remained at the minimum of 512 MB. Second, Figure 15(b)
shows the results on scenario M (8 GB in dense). We see
that now both GLM and MLogreg require runtime adapta-
tion, which has again significant impact but not as high as
for scenario S because the relative effect of MR job latency
becomes less important. Again even one or two adaptations
were sufficient to achieve near-optimal performance.

Finally, we explain the reasons for the moderately worse
performance compared to the best baseline. For example
consider MLogreg, scenario S, dense1000. Even before com-
puting the table() expression that is responsible for most
unknowns, the original AM spawned an unnecessary job on
rowSums(X^2) for initializing the trust region. The actual
migration then took less than 3s out of which we spend only
381ms for writing six intermediates to HDFS. Note that we
did not write the largest input X because it was unmodified.
In general, additional overheads stem from more buffer pool
evictions and sometimes reading the input data again.

6. DISCUSSION
Optimizing resource configurations for a given ML pro-

gram via online what-if analysis significantly improved the
performance of SystemML on top of MapReduce as a state-
less computing framework. In this section, we discuss ques-
tions related to stateful frameworks like Spark, cluster-
utilization based adaptation, additional resources, and sim-
plicity as the motivation for what-if analysis.

Resource Elasticity for Stateful Frameworks like
Spark: Spark [49] on YARN uses standing containers for
its executors that hold in-memory data partitions and need
to accommodate intermediate results of all tasks. Despite
sharing opportunities for broadcast data, this implies that
similar resource-aware what-if analysis techniques could be
used to automatically size executors and decide on the de-
gree of parallelism. Spark keeps its statically configured ex-
ecutor resources for the lifetime of an application because
YARN does currently not allow to resize containers and a
reallocation would lose in-memory data. Existing work on
recommending Spark resources [37] relies on blockmanager
traces of previous runs. In contrast, resource optimization
could help to reduce unnecessary over-provisioning to in-
crease cluster throughput for unseen ML programs and data.
Appendix D provides an initial potential analysis. However,
resource elasticity for frameworks like Spark also faces ad-
ditional challenges like the integration with lazy evaluation.

Cluster-Utilization-Based Adaptation: Our runtime
resource adaptation addresses unknown sizes of intermedi-
ates. However, there are also use cases for resource adapta-
tion to changing cluster utilization. For example, consider
scenarios where we decided to use distributed plans in order
to exploit full cluster parallelism but the cluster is heav-
ily loaded. In those situations, a fallback to single node
in-memory computation might be beneficial. This would
require extended strategies for when to trigger resource re-
optimization depending on cluster utilization, which can be
incorporated into the presented what-if analysis framework.
There is already related work on the impact of varying stor-
age access costs on plan choices in DBMS [38]. This is an
interesting direction for future work.

Additional Resources Beyond Memory: We formu-
lated the ML program resource allocation problem general
enough to cover arbitrary resources. So far, however, we
mainly focused on the most important resource instantiation
of memory because currently (1) SystemML’s in-memory
runtime is single-threaded and (2) YARN schedulers use by
default a so-called DefaultResourceCalculator which only
considers memory. Integrating additional resources like the
number of cores would essentially increase the dimensional-
ity of the search space. There are interesting side-effects to
consider: e.g., usually the degree of parallelism affects mem-
ory requirements [6]. Hence, it fits into our what-if analysis
framework but additional pruning strategies are necessary.
We leave this as another item for future work.

Simplicity and Robustness: Finally, we like to stress
the importance of simple and robust resource optimization.
Consider agile environments with very short release cycles.
Our resource optimizer relies on online what-if analysis to
prevent compiler changes and costing runtime plans takes all
compilation steps into account. At the same time, we exploit
information from the compiler for enumeration and pruning.
This design led to a resource optimizer that automatically
adapts to compiler or runtime changes which is invaluable.
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7. RELATED WORK
What-if optimizer interfaces and parameter tuning have

been studied intensively. More recent work also addresses
declarative ML and resource elasticity. However, our re-
source optimizer is the first work on automatic optimization
of resource configurations for declarative ML programs.

ML Frameworks on YARN: Any large-scale ML sys-
tem on top of MapReduce—like Mahout [3], SystemML [20],
or Cumulon [24]—works, due to binary compatibility, out-
of-the box on YARN but still with static cluster configu-
rations. Other frameworks like Spark [49], REEF [9] or
Flink [32]—which also provide ML capabilities—explicitly
exploit YARN for stateful distributed caching but again rely
on static configurations. This requires the user to reason
about cluster configurations and potentially leads to over-
provisioning. However, there do exist interesting early ideas
on reactive resource-elastic machine learning algorithms for
stateful frameworks like REEF [35]. This work specifically
aims at algorithm-specific extensions for graceful scale-down
in case of task preemption. Instead of restarting the entire
ML program, they approximate the loss function of lost par-
titions and continue the overall optimization. In contrast,
we focus on the general case of declarative ML and proactive
online what-if analysis for resource configurations.

In-Memory ML and Data Analytics: For declara-
tive ML with hybrid runtime plans, memory is often used
as constraint [5, 6]. This inherently leads to memory-sensi-
tive plans. The problem is further intensified by advanced
optimization techniques, out of which many directly affect
memory requirements. Examples are task-parallel ML pro-
grams where the degree of parallelism affects the number
of intermediates [6], operator selection involving broadcast
joins [5, 40, 48], NUMA-aware data replication [51], mate-
rialization and subsampling for model and data reuse [50],
sparsity-aware matrix multiplication chain optimization [5,
28], as well as reducing the number of intermediates in arith-
metic expressions [5, 45, 52]. However, none of these existing
works automatically optimize resource configurations.

MR-Job Parameter Tuning: There is also existing
work on understanding and tuning MR job configurations.
PerfXplain [29] allows performance queries on the impact
of different job configurations. Furthermore, the Starfish
project explored profiling and cost-based parameter opti-
mization for MR jobs via what-if analysis [21], where they
used black-box gridding and recursive random search as
search strategies. PStorM [18] extended this work to profile
matching and re-occurring MR job optimization. MRTuner
[43] further improved this line of work with an analytic
producer-transporter-consumer model. In contrast to our
work, these approaches target the general case of arbitrary
MR jobs with UDFs but (1) focus on one job at-a-time, (2)
rely on logs of previous executions or sampling to obtain ex-
ecution costs, and (3) are not applicable for resource-aware
optimization due to missing interactions with the compiler.

Cloud-Aware ML Workflow Tuning: Cloud settings
offer an elastic tradeoff between execution time and mone-
tary cost [26]. Elastisizer [22] (part of the Starfish project)
automatically solves cluster sizing problems for general-
purpose data-intensive analytics. The authors optimized for
execution time given a provided configuration search space.
This area is relevant because node types constitute resource
configurations as well. Cumulon [24]—as a declarative ML
system—also specifically addressed this cloud setting by op-

timizing the monetary cost of an ML program under time
constraints. Recently, Cumulon also considers the challeng-
ing auction-based market of computing resources such as
Amazon’s spot instances [25], where they respect additional
risk tolerance constraints. In contrast to our resource opti-
mizer, these works optimize for a fixed program or physical
plan due to missing interactions with the compiler.

Elasticity in DBMS and Array Stores: Existing work
on elasticity in distributed DBMS and array stores mostly
target skewed OLTP workloads and expanding distributed
array databases. This includes techniques for live partition
migration in shared storage [14] and shared nothing [19] ar-
chitectures. Accordion [42] addresses the problem of when
and which partitions to migrate, via an optimization algo-
rithm based on linear programming. The algorithm is in-
voked periodically, and minimizes the amount of data moved
under various constraints like max load capacity and max
memory capacity per node. In contrast, elasticity for array
databases [17] specifically targets growing databases. In this
context, they propose strategies for deciding when to expand
and for incremental partitioning, also under the objective of
minimizing data movement. In contrast, our approach does
not focus on stateful databases but plan-aware what-if anal-
ysis for unseen ML programs and input data.

Physical Design Tuning: There is a long history of
physical design tuning via what-if analysis, which is typi-
cally done offline with advisors for indexes, partitioning, and
materialized views [2], as well as multi-dimensional cluster-
ing [54] or compression [30]. This area is relevant because
it deals with repeated optimization regarding different con-
figurations. The INdex Usage Model (INUM) [36] reuses
internal query plans that are independent of data access op-
erators and a cache of reusable plans for more complex sce-
narios. Configuration-parametric optimization [8] generates
a partial memo structure with extension points (so-called
access-path-request operators) and reuses this structure for
arbitrary configurations. This requires optimizer extensions
to consider all relevant plans and prevent too eager branch-
and-bound pruning. In contrast, we rely on very lightweight
compiler interactions for enumeration and pruning.

8. CONCLUSIONS
We introduced a systematic approach to resource elastic-

ity for large-scale ML in order to address the problem of
memory-sensitive plans. Our simple and robust resource
optimizer finds—via online what-if analysis—near-optimal
resource configurations with low optimization overhead. In
conclusion, automatic resource optimization is another step
towards declarative large-scale machine learning. Automatic
resource optimization frees the user from deciding on static
cluster configurations, which is hard because it requires an
understanding of generated runtime plans and it is always
a compromise between a variety of ML programs and spe-
cialized systems in a multi-tenancy environment. In those
environments, resource elasticity also allows to scale-up ML
systems as required and still share cluster resources due
to the integration with global resource management. Our
results are also broadly applicable and can be transferred
to any declarative ML system that supports both scale-up
and scale-out according to cluster configurations. Future
work includes task-parallel ML programs and resource elas-
ticity for stateful runtime frameworks, which both require
extended cost estimation and runtime migration strategies.
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APPENDIX
A. EXAMPLE ML PROGRAM

The following example gives an idea of how exactly high-
level ML scripts with an R-like syntax usually look like. In
detail, we use a simplified version of L2SVM (support vector
machine) as introduced in Subsection 5.1. This formulation
solves the primal SVM optimization problem. Note that this
script specifies the precise algorithm semantics but does not
include any details of runtime plans or data representations.

1: X = read($X);

2: Y = read($Y);

3: intercept = $icpt; epsilon = $tol;

4: lambda = $reg; maxiterations = $maxiter;

5: num_samples = nrow(X); dimensions = ncol(X);

6: num_rows_in_w = dimensions;

7: if (intercept == 1) {

8: ones = matrix(1, rows=num_samples, cols=1);

9: X = append(X, ones);

10: num_rows_in_w = num_rows_in_w + 1;

11: }

12: w = matrix(0, rows=num_rows_in_w, cols=1);

13: g_old = t(X) %*% Y;

14: s = g_old; iter = 0;

15: Xw = matrix(0, rows=nrow(X), cols=1);

16: continue = TRUE;

17: while( continue & iter < maxiterations ) {

18: # minimizing primal obj along direction s

19: step_sz = 0;

20: Xd = X %*% s;

21: wd = lambda * sum(w * s);

22: dd = lambda * sum(s * s);

23: continue1 = TRUE;

24: while( continue1 ) {

25: tmp_Xw = Xw + step_sz*Xd;

26: out = 1 - Y * tmp_Xw;

27: sv = ppred(out, 0, ">");

28: out = out * sv;

29: g = wd + step_sz*dd - sum(out * Y * Xd);

30: h = dd + sum(Xd * sv * Xd);

31: step_sz = step_sz - g/h;

32: if( g*g/h < 0.0000000001 ) {

33: continue1 = FALSE;

34: }

35: }

36: w = w + step_sz*s; #update weights

37: Xw = Xw + step_sz*Xd;

38: out = 1 - Y * Xw;

39: sv = ppred(out, 0, ">");

40: out = sv * out;

41: obj = 0.5 * sum(out*out) + lambda/2 * sum(w*w);

42: print("ITER " + iter + ": OBJ=" + obj);

43: g_new = t(X) %*% (out * Y) - lambda * w;

44: tmp = sum(s * g_old);

45: if( step_sz*tmp < epsilon*obj ) {

46: continue = FALSE;

47: }

48: #non-linear CG step

49: be = sum(g_new*g_new)/sum(g_old*g_old);

50: s = be * s + g_new;

51: g_old = g_new; iter = iter + 1;

52: }

53: write(w, $model)
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B. ML PROGRAM COMPILATION
In addition to the overview in Subsection 2.1, we now

discuss the compilation process of SystemML in more detail.
We use L2SVM from Appendix A as a running example.

Language-Level: In a first step, we parse the given ML
script into a hierarchy of statement blocks and statements,
using a generated parser. This statement block structure is
naturally given by control flow constructs of the script as
shown in Figure 16(a). We also do a semantic validation
and read basic meta data like input data types, dimensions,
and number of non-zeros (sparsity). Depending on the input
format this meta data is either given in the header of the
input (e.g., matrix market), or by a JSON meta data file.

HOP-Level: In a second step, we construct HOP DAGs
for each statement block as partially shown in Figure 16(a).
At HOP level, we apply optimizations like matrix multipli-
cation chain optimization, common subexpression elimina-
tion, constant folding, algebraic simplifications, and other
program rewrites. As an example, consider the statement
block for lines 18-23. First, a static rewrite (independent of
size) transforms sum(s · s) into sum(s2) since unary oper-
ations are easier to parallelize. Second, since s is a column
vector, a dynamic rewrite, transforms sum(s2) into s>s to
prevent the intermediate result of s2. Figure 16(b) shows the
resulting HOP DAG. Other program rewrites include, for in-
stance, branch removal. Consider the if branch on lines 7-11
and an input parameter $icpt = 0. After constant folding,
the predicate is known to be false and hence, we remove the
branch which allows unconditional size propagation. Subse-
quently, we do intra-/inter-procedural analysis for size prop-
agation and compute memory estimates per HOP operator
based on these propagated sizes. These memory estimates
are later used for operator selection in order to decide be-
tween in-memory (CP) and large-scale (MR) computation
but also to decide upon alternative physical operators, some
of which are constrained by available MR task memory.

LOP-Level: In a third, step, we construct a LOP DAG
for each HOP DAG. First, we decide the execution type
with a simple yet very effective heuristic. Whenever an op-
eration fits into the memory budget of CP (given by a ratio
of the max JVM size), we assume that in-memory compu-
tation is more efficient and decide for execution type CP.
Second, for each HOP, we construct a sub-DAG of LOPs,
where we choose from alternative LOP operators. For ex-
ample, we provide six MR and three CP matrix multiplica-
tion operators. There are also physical operators for special
HOP operator patterns like tertiary-aggregate operators for
sum(v1 ·v2 ·v3) (e.g., see lines 29/30). Third, during LOP
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Figure 16: Example ML Program Compilation.

Table 4: Memory-Sensitive Compilation Steps.
Compilation Step Examples
Operator Selection
(Exec Type)

CP vs MR (all HOP operators with at
least one matrix input or output)

Operator Selection (a) MapMM (map matrix mult)
(Physical Ops) (b) MapMMChain (MapMM chain)

(c) PMM (permutation matrix mult)
(d) Map* (elementwise matrix-vector)

HOP-LOP Rewrites (a) Avoid large transpose by transpose-
mm rewrite: X>v → (v>X)>.
(b) CP vs MR data partitioning for all
map-side binary operators.

Piggybacking
(MR jobs)

Bin packing constrained by sum of mem-
ory requirements of physical operators.

DAG construction, we apply specific HOP-LOP rewrites.
Examples are decisions on data partitioning, unnecessary
aggregation, and specific rewrites like X>v→ (v>X)> that
are applied depending on the chosen LOP operator. Fourth,
we generate the execution plan, by creating a runtime pro-
gram consisting of program blocks and executable instruc-
tions. We create a program block per statement block and
use a piggybacking algorithm to generate instructions for the
entire DAG. Piggybacking tries to pack the given LOP DAG
into a minimal number of MR jobs under several constraints
like job types, execution location of instructions (e.g., map,
aggregation, or reduce), and memory constraints.

Runtime-Level: In a fourth step, we also allow for dy-
namic recompilation during runtime if the initial size prop-
agation was not able to resolve all unknowns. In this case,
operator selection also marks DAGs for recompilation. Pro-
gram blocks have references to the original HOP DAGs in
order to regenerate runtime plans at any time during pro-
gram execution. The recompilation hooks are given by the
natural program structure or by artificially created cuts of
program blocks. The primary target of recompilation are
last-level program blocks (generic) or predicates. During re-
compilation, we exploit the size information of intermediates
and propagate them through the DAG before re-applying
dynamic rewrites and runtime plan generation.

Summary Memory-Sensitive Compilation Steps:
Many of the mentioned compilation steps include decisions
related to available memory of CP or MR tasks. Table 4
gives examples of those decisions. First, the memory esti-
mate of each HOP operator—with at least one input/output
matrix—directly affects its execution type. This allows us,
for example, to schedule the entire inner loop of L2SVM
into CP memory. Second, efficient physical operators for
matrix multiplication and binary elementwise operations are
crucial. For example, consider the matrix-vector multiplica-
tions in lines 13, 20, and 43, which are the only operations
on the large X. A mapmm operator (that broadcasts the vec-
tor) allows us to compute this multiplication in the mappers
without the need for data shuffling of X but requires that
the vector fits into the MR task memory. Third, rewrites
like X>v → (v>X)> are only applied if the newly intro-
duced operators can be executed in CP memory. Fourth,
also piggybacking of operators into MR jobs is constrained
by memory. In addition, there are also memory-related cost
factors during runtime. The buffer pool size is relative to the
memory budget which affects evictions. In conclusion, there
are many memory-sensitive compilation decisions across the
entire compilation chain. Online what-if analysis automat-
ically takes all of them and there inter-dependencies into
account by generating and costing runtime plans.
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C. PARALLEL RESOURCE OPTIMIZER
In order to reduce optimization overhead for large ML pro-

grams, we exploit the property of semi-independent problems
for parallelization. We aim for a scalable algorithm without
global synchronization barriers, with small serial fraction,
and without overhead for small or unknown problems.
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Figure 17: Parallel Resource Optimizer.

Figure 17 shows the architecture of our multi-threaded re-
source optimizer. We use a master and k parallel workers,
where each worker creates its deep copy of the program and
HOPs for concurrent recompilation. The basic idea is that
the master enumerates CP memory budgets rc, and does
baseline compilation and pruning, while workers process op-
timization tasks of enumeration (Enum_Srm, (rc, B′i, Srm)),
and aggregation (Agg_rc, (rc, B′)). For each rc, we cre-
ate (1) for each B′i ∈ B′ an Enum_Srm task, and (2) a single
Agg_rc task. We use a central task queue for load balancing,
where workers dequeue and execute tasks. This task-based
approach is similar to parallel query optimization in Orca
[44] but due to a fixed dependency structure does not require
a specialized scheduler. We extend our memo structure to
an n×2 · |Src | matrix that replicates the memo structure for
each rc value, for which storage overhead is negligible. For
Enum_Srm tasks, workers enumerate the second dimension
and finally do a lock-free memo update of locally optimal
resources and costs. For Agg_rc tasks, workers probe the
memo structure until all blocks for a given rc value have
been updated and determine the aggregated program costs.
After all tasks have been executed, the master picks the re-
sources with minimal aggregated costs. For small problems,
we do not instantiate parallel workers if the initial baseline
compilation resulted in B′ = ∅. This architecture enables
(1) task-parallel optimization of semi-independent problems,
and (2) pipelining of baseline compilation and enumeration.

Experiments Optimization Overhead: Figure 18
shows a comparison of serial and parallel optimization on
GLM, dense, #Cols=1,000; ran on the head node (2x4 cores)
of our cluster. Figure 18(a) shows Equi with a base grid of
m=45. Even for one worker thread, there is an improvement
due to pipeline parallelism. Figure 18(b) shows our default
Hybrid and all scenarios. On scenarios M and L the benefit
increases due to more points and less pruned blocks.
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Figure 18: Parallel Optimization for GLM.

Table 5: Spark Comparison: Different Data Sizes.
Scenario SystemML SystemML on Spark

(? CP only) on MR w/ Opt Plan 1 (Hyb.) Plan 2 (Full)
XS (80MB) 6 s? 25 s 59 s
S (800MB) 12 s? 31 s 126 s
M (8GB) 40 s? 43 s 184 s
L (80GB) 836 s 167 s 347 s

XL (800GB) 12,376 s 10,119 s 13,661 s

Table 6: Spark Comparison: Throughput #Users.
# of Users SystemML SystemML on Spark
(Scenario S) on MR w/ Opt Plan 2 (Full)

1 5.1 app/min? 0.48 app/min

8 35.6 app/min?(7.0x) 0.84 app/min (1.8x)
32 69.8 app/min?(13.7x) 0.83 app/min (1.7x)

D. SPARK COMPARISON EXPERIMENTS
We also aim to analyze the potential of resource optimiza-

tion for stateful frameworks like Spark [49].
Experimental Setting: The setup is the same as de-

scribed in Subsection 5.1. We used Spark 1.2 (12/2014) and
ran it in yarn-cluster mode, with a static resource configu-
ration of 6 executors, 20 GB driver memory, 55 GB execu-
tor memory, and 24 cores per executor. Note that Spark
(1) relies on static default configurations or per application
parameters, and (2) uses more aggressive ratios for JVM
overheads, which enabled to run all 6 executors besides the
driver. SystemML uses the introduced resource optimizer
and the application use case is L2SVM from Appendix A.

Baseline Comparison: In the interest of a fair compari-
son, we ported our SystemML runtime operations on Spark’s
JavaPairRDDs and compared (a) SystemML w/ resource
optimizer on MR (w/o jvm reuse) with (b) SystemML run-
time on Spark. Since Spark is on a lower abstraction level,
we had to hand-code execution plans. We literally trans-
lated the L2SVM script and created two plans: (1) Hybrid,
where only operations on X are RDD operations (lines 13,
20, and 43), while all others are CP-like operations, and (2)
Full, where all matrix operations are RDD operations. Ta-
ble 5 shows the results. First, single-node CP operations
are important for small data sets (e.g., see scenarios XS-
M, Spark Plan 1 and 2). Up to scenario M, Spark Plan 1
does not fully utilize all executor cores. Second, Spark has a
sweet spot, due to RDD caching, where data does not fit in
a single node but fits in aggregated memory (L). Third, for
large data (>2x aggregated memory) there are no significant
differences due to similar disk IO and deserialization costs.

Throughput Comparison: We also compare the result-
ing throughput of SystemML with our resource optimizer
against SystemML on Spark, Plan 2 (Full). The use case
is L2SVM, scenario S (800 MB) and we varied the number
of users |U |. We reduced Spark’s driver memory to 512 MB
in order to prevent cluster deadlocks without constraining
maximum-am-resource-percent. Table 6 shows the results.
Moderate resource requirements of SystemML (8GB CP
memory, 1 core, no MR jobs) enabled a throughput improve-
ment of 13.7x at 32 users. The speedup is suboptimal due to
IO bandwidth saturation (disk/memory). In contrast, due
to over-provisioning, even a single Spark application already
occupied the entire cluster. The slight throughput increase
with more users is due to latency hiding of driver setup and
few overlapping applications each with fewer executors.

In conclusion, resource optimization is also important for
frameworks like Spark to achieve high performance without
over-provisioning, while maintaining application isolation.
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