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ABSTRACT
The digitalization of healthcare has created abundant and
rich health-related data. To exploit the wealth of infor-
mation in these healthcare data, modern applications often
need to support rich queries that access heterogeneous data
from diverse sources. This raises a number of data manage-
ment challenges on data placement, data integration, and
data querying. In this paper, we demonstrate how to ad-
dress these challenges using an example healthcare appli-
cation, which helps physicians match drugs against patient
conditions. Three datasets are collected and placed into
three disparate stores: a relational database, a text search
engine, and a graph database. Domain specific data integra-
tion methods are applied to link the different pieces of data
together. And finally, a simple polystore architecture is de-
veloped to support rich queries across the different datasets
stored in disparate stores.
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1. INTRODUCTION
The digitalization of healthcare has created abundant and

diverse health-related datasets, ranging from patient elec-
tronic medical records (EMR), physiologic signals from med-
ical devices, IoT data from wearables, pharmaceutical in-
formaton, and genomic data, to curated medical ontologies.
Data coming from such diverse data sources are often stored
under heterogeneous data models, including structured data
that fit in the relational model, text data (e.g. clinic notes
and drug side effects), graph data (e.g. medical ontolo-
gies and protein interaction networks), time series data (e.g.
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ECG signals), sequence data (e.g. genome data), and im-
age data (e.g. X-rays). Sometimes, even a single dataset
needs to store data under different data models. For exam-
ple, Mimic [16] is such a heterogeneous dataset that contains
structured data, text data, and time series data, etc.

To exploit the wealth of information in the healthcare
data, applications often need to support rich queries that
access data from diverse sources and under heterogeneous
data models. For example, to find patients with similar dis-
eases, one needs to refer to the disease relationships (e.g.
type 2 diabetes is a type of diabetes) in the ontology graph
to define disease similarity (e.g. sibling or cousin nodes in
the disease hierarchy are considered similar), when querying
structured records of patients (e.g. EMR). As another ex-
ample, the textual clinical notes often need to be accessed
together with the structured records of a patient to produce
a personalized treatment plan.

The need to enable rich queries against heterogeneous
data from diverse sources creates a number of data man-
agement challenges as described below.

Data placement. The first challenge is on deciding what
data models and storage engines best fit the data. This
requires a deep understanding of the data, the expected
workload of the target healthcare application, and the query
processing capabilities of the underlying data stores. Het-
erogeneous data requires different processing capabilities.
Structured data is best suited to be stored in databases
and queried through SQL; text data is mostly indexed and
retrieved through search engines, like Elasticsearch [2] and
Solr [1]; graph data is better analyzed using graph query
languages (e.g. Gremlin [17] and Cypher [12]) in graph
databases, like JanusGraph [5] and Neo4j [6]. Although
one could argue to transform all the data into a single data
model and analyze using a single query engine to address
the issue of heterogeneity. However, we believe that this
would require a tremendous amount of pre-processing effort
in data transformation and often might lead to sub-optimal
results in terms of supported queries, quality, and perfor-
mance. Essentially, one size does not fit all [19]. As such,
this approach of using the best store based on its querying
capabilities and the supported data model is consistent with
the recent polystore approaches like BigDAWG [11].

Data integration. The second challenge is on how to
link different pieces of data together. For example, to better
provide personalized preventive medicine, applications need
to link a patent’s EMR records with his/her IoT data from
the wearable devices. This requires matching a patient to a
user of a mobile app, through entity resolution [13]. Actu-



ally, data integration issues also arise when a single dataset
is broken up into pieces under different data models. For
example, when the textual clinic notes are stored separately
from the structured part of the patient records, integration
points are still need to be maintained to reconstruct the full
patient records later on. Of course, existing techniques in
data integration [14] and to some extent graph based link-
ing approaches like [10] that are limited to keyword search
across different stores can be applied, but we argue that data
integration especially in the healthcare domain requires an
additional deep understanding of the semantic information
in the domain schemas, with help from domain specific on-
tologies, taxonomies and dictionaries.

Querying across disparate data sources. The final
challenge is on querying data placed in disparate data stores.
Enabling rich queries in the healthcare domain requires ac-
cessing heterogenous data across disparate storage engines
with different query languages/interfaces and processing ca-
pabilities. This essentially calls for a polystore solution [19].
Having said that, we would like to emphasize that any im-
plementation of such a polystore solution would require ad-
dressing issues such as query optimization, data transfor-
mation between different data models, and integration of
results obtained from different stores. For e.g. Estocada [8],
allows for querying data fragments across a heterogeneous
set of stores. It is based on view based query rewriting
and requires a separate integration engine to combine re-
sults across different stores.

In this paper, we demonstrate how we address the above
three challenges of data placement, integration, and query-
ing, to enable rich queries over heterogeneous data from di-
verse sources for a particular healthcare application. This
application aims at helping physicians match drugs against
patients’ conditions. To achieve this goal, three distinct
datasets are collected: a patient EMR dataset, a drug dataset,
and a disease ontology dataset. These datasets are ana-
lyzed and stored into three disparate stores, the Db2 rela-
tional database [3], Elasticsearch [2], and JanusGraph [5],
based on the corresponding data models that best fit the
data. We then apply domain specific data integration meth-
ods to connect the different pieces of data together. Af-
terwards, a simple polystore architecture is developed to
support rich queries across the different datasets stored in
disparate stores.

Note that although we implemented our solution for a
Healthcare application, our proposed architecture and tech-
niques for data placement, integration, and querying are
generic, applicable across different domains and can ben-
efit many of the existing polystore architectures mentioned
above.

2. DATASET PLACEMENT
In this section, we describe the datasets collected for the

demo application and their placement based on the their
characteristics, the expected workload and the data models
supported by the underlying stores.

MDX Dataset [4]. This dataset describes a set of drugs
in terms of the diseases or medical conditions that they
treat, the dosage and administration details for different age
groups, information about the adverse effects, precautions
to be taken, how each drug is supplied, etc. The domain
schema of the dataset is captured by an ontology consisting

of 43 concepts, 78 properties and 58 relationships providing
a semantically rich representation of the meta-data associ-
ated with the dataset.

This dataset is a collection of heterogeneous data. First
of all, it contains structured information about drugs such
as their names and IDs, the conditions they treat, admin-
istration dosage for adults and pediatric use, drug efficacy,
approval authority (like FDA), etc. We extract and store in-
stance data corresponding to these concepts in the ontology
into a relational database (Db2). Storing such information
in the relational database allows us to efficiently support
queries that require joins and aggregations as well as inte-
gration with other structured data sources (Ref Section 3).

This dataset also has extensive textual information, e.g.
the adverse effects associated with the drug such as increased
risk of bleeding, drug precautions such as the drugs should
not be taken by patients with hepatic dysfunction, whether
the drug should be administered (intravenously or orally),
etc. We index such textual information associated with each
drug in a text search index (Elasticsearch) in JSON format.
Using a text search engine enables us to utilize fuzzy match-
ing and ranking capabilities to answer queries that require
context from the textual data associated with the drugs.

Patient Dataset: This is an internal dataset that contains
patient EMR records, including basic information about pa-
tients, lab observations, medical conditions, and medication
prescribed for each medical condition.

The EMR records in this dataset are available as struc-
tured data, and as such we place them in the relational
database enabling a rich set of point and aggregation queries
against the dataset. This also enables us to integrate the
dataset with the structured portion of the MDX dataset en-
abling derivation of useful insights across the two integrated
datasets (Ref Section 3).

SNOMED Ontology [7]. SNOMED is a well known repos-
itory of medical terminology, represented in the form of an
ontology graph that provides a rich semantic representation
of clinical terms, disease conditions and their relations to
each other, including hierarchies and compositions.

The SNOMED ontology graph is stored in a graph database
(JanusGraph) to facilitate execution of a rich set of graph
queries such as reachability queries (whether two medical
conditions or diseases are related), path queries to see how
two diseases are connected, similarity queries to see if two
diseases are similar (e.g. sibling or cousin nodes in the dis-
ease hierarchy or nodes within a k-hop neighborhood in the
SNOMED ontology are considered similar).

3. DATASET INTEGRATION
In this section we provide a high level overview of our

approach for integrating domain specific datasets collected
from different sources and placed onto multiple heteroge-
neous stores. We follow a two step approach.

First, we utilize the semantic information embedded in the
domain schema, often described in the form of ontologies
and augmented with taxonomies and dictionaries. These
domain-specific ontologies provide an entity-centric view of
the domain schema, in terms of the entities and concepts
relevant to the domain and the relationships between them.
We apply standard entity resolution techniques [13] over this
meta data to identify candidate concept pairs that seman-



tically represent the same information. These concept pairs
are considered as potential data integration points between
two datasets.

Second, from the candidates, we determine the minimal
set of concept pairs that are viable points of integration.
For doing so, we find support at the data instance level
based on the matches between the candidate concept pairs.
We compute the Jaccard similarity score for each such pair
(Ratio of the number of instance level matches to the to-
tal number of possible instance pairs). A naive approach
to compute the match between data instances would be to
do an exact data equality match. However, as the datasets
are collected from varied sources, an exact match technique
does not have a good recall. We, therefore, utilize domain
specific vocabularies, available as dictionaries, taxonomies
and smart term generators, to create variants of the data
instance values representing the same information, and use
these to determine the number of matches between candi-
date concept pairs. For example, in order to determine a
match between, say, a particular disease like Renal impair-
ment treated by a drug and the medical condition kidney
failure associated with a patient, our relaxation technique
would indicate a match, as both these terms are variants
of the same clinical term. All Concept pairs that have a
Jaccard similarity (computed based on their instance level
matches) above a certain threshold (empirically determined)
are considered as the minimal set of points of integration
between the two datasets. Next we describe the different
scenarios for dataset integration.

3.1 Integration of Heterogeneous Data
This scenario handles the case when a single dataset con-

tains a mix of different types of data like MDX. Figure 1
shows the healthcare drug dataset MDX, available as XML
documents. The structured portion of the drug data is
stored in Db2 and the textual information associated with
each drug is indexed in Elasticsearch. The point of integra-
tion between the two portions is via the drug identifiers.

Healthcare MDX Dataset

MDX XML Dataset

XML to JSON Parser
XML to Relational 
Data Conversion

JSON ETL

Index

Figure 1: MDX Dataset: Structured and text data
integration

3.2 Integration of data from different sources
Use Case 1: This use case handles the scenario of integrat-
ing datasets having different data models and collected from
different sources. Figure 2 shows the patient dataset and the
SNOMED ontology, stored in Db2 and JanusGraph, respec-
tively. The point of integration between the two datasets

across the two different stores is provided by a SNOMED
ID which uniquely identifies a particular disease in the on-
tology (represented by a node in the SNOMED ontology
graph) and the medical condition that a patient is suffering
from (stored as a column in the relational database).

Patient DatasetSNOMED Ontology

Relational Data IngestionGraph Data Ingestion

SNOMED ID:  CONDTION ID

Figure 2: Patient Dataset and SNOMED Ontology:
Structured and graph data integration

Use Case 2: This use case handles the scenario of inte-
grating two datasets having the same data model but col-
lected from different sources. Figure 3 shows two different
structured datasets: Patient and MDX(structured portion).
In order to identify the point of integration, we follow our
two step approach mentioned above and identify candidate
concept pairs: the patient medical condition concept in the
Patient dataset and the concepts Indication and Finding in
the Drug dataset that pertain to medical conditions treated
by a drug. We then determine the instance level Jaccard
similarity between the candidate pairs using the relaxed ap-
proach as described above and choose the Indication concept
as the best match with the patient condition concept pro-
viding the necessary point of integration.

PATIENT

Observation 1 Observation 2 Chronic Disease

PATIENT CONDTIONS 
(SNOMED IDs)

Drug

Indication for Drug

Indication

SNOMED ID: INDICATION ID

Figure 3: MDX Drug - Patient EMR dataset inte-
gration

4. SYSTEM ARCHITECTURE
In this section we introduce our system architecture (Fig-

ure 4) that enables the federation of disparate data stores
and provides a mechanism of querying an integrated health-
care dataset. In our simple approach, we use a relational
engine (Db2 [3]) as the main query processor and augment
its capabilities with complex text search and graph queries
through User Defined Functions (UDFs) that query, trans-
form and ingest data from a text search engine (Elastic-
search [2]) and a graph database (JanusGraph [5]).

The choice of using UDFs was largely driven by, 1) their
availability in most database systems and, 2) the flexibility
that they can provide in terms of interfacing with disparate
data stores, data ingestion and transformation from different
data models, all of which are essential for implementing our



polystore architecture. In particular, we use Table UDFs in
our implementation which return a record set, essentially a
table which can then be joined with other tables in the SQL
query to produce a combined result. As a result users can

Query Interface

User Query

Relational 
Engine Text 

Search 
Index

UDF @param: 
Query String

Search API

SQL Query/Response

Graph Database

Graph API

Figure 4: System Architecture

submit SQL queries against the relational query interface
of any standard relational database system. This precludes
any requirements of making changes to the SQL query lan-
guage itself to accommodate constructs for querying graphs,
text or semi-structured data. UDFs in the SQL query allow
sub-parts of the query to be executed across different stores
and results to be combined in the relational database and
returned to the user.

In order to generate an optimal plan, query optimizers
depend on cardinality estimations. It is hard to estimate
the cardinality of tables returned using the UDF mecha-
nism for data ingested from other stores based on a dy-
namic query. However, most relational engines do support
cardinality hints. We exploit this ability and provide hints
to the query optimizer using clues from queries against the
search and graph stores. For example, if the text search
queries contains a ‘count=1000’ clause or a graph query has
a ‘limit(10)’ clause, we extract this information to provide
a cardinality hint. In the absence of such clues, we can
leverage existing techniques for cardinality estimation over
text-search indexes [9, 15] and graph stores [18]. In practice,
we observed that most queries that require context from the
search and graph engines do limit the number of results us-
ing count and limit clauses enabling us to provide necessary
inputs to the relational engine to generate optimal query
execution plans.

5. USE CASES
In this section we provide a detailed walk through us-

ing different use case scenarios. We first describe the poly-
store setup, including the placement of data across different
stores. We then provide details of queries issued against the
polystore for the different scenarios described below using
the system query interface shown in Figure 5.

5.1 Polystore Setup
We place and integrate the healthcare datasets described

in Section 3 in three different stores. The MDX dataset
is placed in a relational database (DB2) and text search
index (Elastic Search). The Patient dataset is placed in the
relational database (DB2) and the SNOMED ontology is

Figure 5: User Interface

placed in the graph database (Janus Graph). We register
UDFs with DB2 that allow it to ingest and transform data
from the other two data stores over the network.

5.2 Use case scenarios
Scenario 1: Query against multiple data sources in
a single relational database

The following query searches for a patient the possible
drugs that are relevant to the patient’s medical conditions.

SELECT PATIENT.PATIENT ID , CHRONICDISEASE.SNOMEDID,
INDICATION.INDICATIONNAME, DRUG.DRUGNAME

FROM PATIENT INNER JOIN CHRONICDISEASE
ON PATIENT.PATIENT ID = CHRONICDISEASE.PATIENT ID

INNER JOIN INDICATION
ON INDICATION.SNOMEDID = CHRONICDISEASE.SNOMEDID

INNER JOIN INDICATIONFORDRUG
ON INDICATION. INDICATIONID

= INDICATIONFORDRUG. INDICATIONID
INNER JOIN DRUG

ON INDICATIONFORDRUG.DRUGID = DRUG.DRUGID
WHERE PATIENT.PATIENT ID = ’ 10000 ’
ORDER BY CHRONICDISEASE.SNOMEDID;

This query can be executed completely in the relational
store using multiple joins over different tables of the inte-
grated Patient and MDX dataset. Scenario 1 demonstrates
the benefits in terms of the richness of queries than can be
supported by the integration of two different structured data
sets using the two step approach mentioned in Section 3.
The absence of such an integrated solution would necessi-
tate applications to reason about and combine results from
queries against two different datasets.

Scenario 2: Query across the relational database and
the text search engine

The following query finds all possible drugs relevant to
a patient condition and that should be administered intra-
venously.

SELECT PATIENT.PATIENT ID , CHRONICDISEASE.SNOMEDID,
INDICATION.INDICATIONNAME, DRUG.DRUGNAME,
CASEWHEN (R.DRUGIDENTIFIER IS NULL)

THEN 0 ELSE 1 END INTRAVENOUS, R.HIGHLIGHT
FROM PATIENT INNER JOIN CHRONICDISEASE

ON PATIENT.PATIENT ID = CHRONICDISEASE.PATIENT ID
INNER JOIN INDICATION

ON INDICATION.SNOMEDID = CHRONICDISEASE.SNOMEDID
INNER JOIN INDICATIONFORDRUG



ON INDICATION. INDICATIONID
= INDICATIONFORDRUG. INDICATIONID

INNER JOIN DRUG
ON INDICATIONFORDRUG.DRUGID = DRUG.DRUGID

LEFT JOIN TABLE(POLYSTORESEARCH( ’ f i l t e r=
admin i s t ra t i on . type : int ravenous&count=1000 ’ ) ) R

ON DRUG.DRUGIDENTIFIERINT = R.DRUGIDENTIFIER
WHERE PATIENT.PATIENT ID = ’ 10000 ’
ORDER BY CHRONICDISEASE.SNOMEDID;

The drugs relevant for a specific patient’s conditions are ob-
tained from the relational store. The specific drugs that
can be administered intravenously are obtained by doing a
text search on drug related text data. The drug identifier
returned by the search index for the drugs that match the
search condition are combined with the drugs prescribed for
specific patient conditions to get the desired result.

Scenario 2 benefits from multiple stages of data set inte-
gration. First, is the patient and drug data set integration
(integration of two structured datasets) that allows the ex-
traction of drugs relevant to the patient condition. Second,
Drugs relevant to a particular type of administration mech-
anism are obtained from a search store through the power-
ful UDF (described in Section 4) mechanism which enables
querying, data transformation and ingestion of data from a
text search engine.

Scenario 3: Query across the relational and graph
databases

The following query searches all patients suffering from a
particular medical condition as well as the conditions similar
to it.

SELECT PATIENT.PATIENT ID , CHRONICDISEASE.SNOMEDID
FROM PATIENT INNER JOIN CHRONICDISEASE

ON PATIENT.PATIENT ID = CHRONICDISEASE.PATIENT ID
WHERE CHRONICDISEASE.SNOMEDID IN(

SELECT SNOMEDID
FROM TABLE(POLYSTOREGRAPH( ’ {”greml in ”:

”g .V( ) . has ( ’SNOMEDID’ , 3 81 ) . s t o r e ( ’d ’ ) . both ( )
. s t o r e ( ’d ’ ) . both ( ) . s t o r e ( ’d ’ ) ) . cap ( ’d ’ ) . dedup ( )
. va lues ( ’SNOMEDID’ )”} ’ ) ) ;

This query requires the processing capabilities of a rela-
tional store to find patients suffering from a particular con-
dition and a graph store to find conditions similar to a dis-
ease identified by a SNOMED ID. The similar diseases to a
particular disease is defined as the diseases within its 2-hop
neighborhood.

Scenario 3 highlights the benefits accrued from the inte-
gration of two datasets having different data models and
collected from different sources. A structured dataset (pa-
tient dataset) and a graph data set (SNOMED ontology)
stored under different data models across two different data
stores. Again, the scenario demonstrates the effective use
of UDFs in our polystore architecture for the required data
transformation and ingestion to support a rich set of queries.

In our current system, a user has to explicitly express what
sub-queries are issued against the different stores and how
their results are combined together. However, the burden
of writing explicit queries in the UDF calls for the indi-
vidual stores can be alleviated by a higher-level abstraction
layer that exposes a natural language query (NLQ) interface
and hides the complexity of explicit queries from the users.
Given inputs of data location and underlying store capabil-
ities, such an abstraction layer could then translate a user
query/request into appropriate sub-queries and route them
against the appropriate underlying data stores. We would
like to emphasize that our UDF-based polystore architecture

proposed in this paper would serve as a basis for building
such a high-level abstraction layer.

6. CONCLUSION
In this paper, we have demonstrated how to effectively

support a rich set of queries against an integrated health-
care dataset consisting of structured, text and graph data
collected from a diverse set of data sources. We highlight
the challenges in building a system for querying and ana-
lyzing such a dataset placed on a heterogeneous set of data
stores that support different data models and have varying
query processing capabilities. We build and demonstrate a
polystore solution to address the challenges in data place-
ment, data integration and querying across disparate data
sources in the healthcare domain, and provide several use-
ful real-world scenarios to highlight the effectiveness of our
proposed system in gaining valuable insights from the un-
derlying dataset.
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