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Large scale analytics engines have become a core dependency for modern data-driven enterprises to derive

business insights and drive actions. These engines support a large number of analytic jobs processing huge

volumes of data on a daily basis, and workloads are often inundated with overlapping computations across

multiple jobs. Reusing common computation is crucial for efficient cluster resource utilization and reducing job

execution time. Detecting common computation is the first and key step for reducing this computational redun-

dancy. However, detecting equivalence on large-scale analytics engines requires efficient and scalable solutions
that are fully automated. In addition, to maximize computation reuse, equivalence needs to be detected at the

semantic level instead of just the syntactic level (i.e., the ability to detect semantic equivalence of seemingly

different-looking queries). Unfortunately, existing solutions fall short of satisfying these requirements.

In this paper, we take a major step towards filling this gap by proposing GEqO, a portable and lightweight

machine-learning-based framework for efficiently identifying semantically equivalent computations at scale.

GEqO introduces two machine-learning-based filters that quickly prune out nonequivalent subexpressions and

employs a semi-supervised learning feedback loop to iteratively improve its model with an intelligent sampling

mechanism. Further, with its novel database-agnostic featurization method, GEqO can transfer the learning
from one workload and database to another. Our extensive empirical evaluation shows that, on TPC-DS-like

queries, GEqO yields significant performance gains—up to 200× faster than automated verifiers—and finds up

to 2× more equivalences than optimizer and signature-based equivalence detection approaches.
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1 INTRODUCTION
Modern data-driven enterprises fundamentally rely on large-scale analytics engines (e.g., Spark [7],

SCOPE [52], Synapse [38], BigQuery [20], Redshift [23]) to derive business insights and drive
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actions. Concretely, engines such as SCOPE process exabytes of data and execute millions of

jobs, with trillions of operators [31] per cluster [56]. Computational redundancy within these

analytics engines is strikingly common [31, 51], where intermediate results are duplicated across

different queries (i.e., they contain equivalent subexpressions). According to Jindal et al. [32], about

40% of the jobs in SCOPE contain equivalent subexpressions (i.e., at least one subexpression is

equivalent to a subexpression in another job). Because of this pervasive redundancy, identifying and

reusing common computation has long been recognized as a critical technique to improve query

performance and reduce operational costs. For example, a wide range of tools and approaches for

leveraging materialized views have been developed, including CloudViews [30], Google Napa [2],

and Redshift AutoMV [5]. Common computation reuse has also been exploited for multi-query

optimization [46, 48] in the context of multiple-query-at-a-time systems.

For all these tools and techniques, detecting equivalent subexpressions is the first and crucial step.

For example, view selection algorithms (e.g. [3]) maximize the benefit of materializing computation

that is most redundant in cost or frequency of use, under a storage or maintenance cost constraint.

Similarly, view matching relies on detecting and leveraging equivalent views to improve query

performance. At the query level, identifying equivalence is also a crucial step in efficient rewriting

(either automatically by an optimizer or manually by a DBA), where a query is transformed into an

equivalent—but better-performing—variant [21, 22]. Finally, determining query equivalence is also

important in generating functional or performance tests for database implementations [34, 50].

In this paper, we focus on the problem of detecting subexpression equivalence at scale.1 There are
a number of distinct challenges in doing so. First, the detection process must be automatic due
to the sheer number of developers and jobs involved. Second, scalability is crucial as quadratic

pairwise comparison over trillions of subexpressions is intractable in most current solutions.

Third, to maximize computation reuse, equivalence detection needs to be sufficiently general to
identify common computation expressed in different ways by different users. This means that a

detection algorithm should go beyond merely “judging a book by its cover” (i.e., only identifying

superficially- or syntactically-equivalent subexpressions) but rather “look beneath the surface” to

detect semantic equivalence between subexpressions with dissimilar structures. Figure 1 shows

such an example, where the highlighted subexpressions differ syntactically but are nonetheless

semantically equivalent.

Existing approaches to detecting subexpression equivalence do not address all of the above

challenges. Optimizer-based approaches, which are used by many classical materialized view

selection and matching algorithms [3, 18], defer to the query optimizer to detect equivalence.

This approach lacks generality, given that even highly-mature optimizers such as SQL Server

are missing equivalence rules necessary to identify common scenarios [50]. It is also inefficient

given cloud-scale volumes of complex queries, where the query optimizer quickly becomes a

bottleneck. Manual approaches, commonly used in many relational OLAP databases—including

state-of-the-art cloud-based analytics systems like Snowflake [12], BigQuery, and NAPA— require

users to manually identify common computations and create materialized views, which is error-

prone, tedious and simply does not scale. Signature-based view materialization approaches, like

CloudViews [30], use Merkle tree-like signatures for efficient identification of syntactically-identical

subexpressions. However, this approach sacrifices completeness as it may miss opportunities for

identifying semantically-equivalent subexpressions, as illustrated in Figure 1. At the other end of

the spectrum, verification-based approaches, such as Cosette [10] and SPES [54], formally prove

the semantic equivalence of queries using automated proof assistants or SMT solvers. While these

1
This work does not propose a novel view selection or rewriting algorithm. Rather, it presents a framework designed to

accelerate equivalence detection, which is considered a fundamental step for these and other algorithms.
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Q1: SELECT y, AVG(x) FROM (

SELECT A.x, B.y FROM A, B
WHERE A.joinKey = B.joinKey
AND A.val > B.val + 10
AND B.val > 10

) GROUP BY B.y

Q2: SELECT SUM(x), SUM(y) FROM (

SELECT A.x, B.y FROM B, A
WHERE B.joinKey = A.joinKey
AND B.val + 10 < A.val
AND B.val + 10 > 20
AND A.val > 20

)

Fig. 1. Two queries that contain semantically-equivalent subexpressions highlighted by shaded boxes.

approaches are highly effective, they suffer from scalability issues. Exhaustively evaluating all pairs

of subexpressions over a single day of jobs at cloud-scale would require over a trillion expensive

formal verifications and more than a century of compute time!

In this paper, we introduce GEqO (a General Equivalence Optimizer) , which addresses the

aforementioned challenges. GEqO is a general framework for efficiently identifying semantically-

equivalent subexpressions at scale. It applies a series of equivalence filters to sets of subexpressions,

enabling accelerated detection. To ensure correctness, GEqO finally applies an expensive formal

verifier—but only after filtering most nonequivalent subexpressions, which constitute the vast

majority of the pairs. As a result, GEqO produces subexpression pairs that are, with perfect precision

and near-perfect recall, semantically equivalent.

A desirable equivalence filter has two important properties: it should (i) admit virtually all of the

equivalences (i.e., exhibit a high true positive rate; TPR) and (ii) reject most non-equivalences (i.e.,

have a high true negative rate; TNR). Table 1 illustrates this for GEqO’s filters (detailed below), where

the TPR is near-perfect, and the TNR steadily increases until all negatives have been eliminated.

To maximize performance, GEqO arranges filters to rapidly reject “easy” nonequivalent subex-

pression pairs, with faster filters applied first, as shown in Table 1. Slower but increasingly complex

filters are then applied to identify more difficult cases. This trade-off allows GEqO to achieve

performance close to optimal, assuming an oracle that verifies only equivalent pairs, and is almost

200× faster than verifying all subexpression pairs.

While prior work has established quick-but-low-precision heuristic-based filters—i.e., matching

common table and column sets [18], which we refer to as schema filter (SF) in Table 1—and expensive
automated verifiers (AV in Table 1) that are slow with perfect precision, there currently exists no

“middle ground”: a way to filter non-equivalent subexpressions rapidly with high precision. GEqO

fills this gap by introducing two such filters.

First, GEqO’s vector matching filter (VMF) embeds subexpressions in a learned vector space and

identifies likely equivalent pairs by applying an approximate nearest neighbor search (ANNS).

ANNS is a popular, high-performance technique [16, 45] with moderate precision. GEqO leverages

the VMF to efficiently prune moderately-difficult cases not handled by the SF, while at the same

time ensuring that equivalence pairs are admitted with high recall.
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Table 1. Performance of GEqO and its filters (SF , VMF , EMF ) on ∼50k subexpression pairs and 50 equivalences
generated using a TPC-DS schema; see §7.5.

Filter Time (sec) TPR TNR Complexity

Schema Filter (SF ) 0.3 0.98 0.37 O(𝑛)
Vector Matching Filter (VMF ) 0.5 0.98 0.66 O(𝑛 log𝑛)
Equivalence Model Filter (EMF ) 1.3 0.98 0.80 O(𝑛3)
Automated Verifier (AV ) 898.5 1.00 1.00 O(𝑛 · 2𝛺 (𝛾 ) )
GEqO 3.1 0.93 1.00 O(𝜖 · 2𝛺 (𝛾 ) ) + 𝑜𝑝𝑡
Oracle + AV 1.0 1.00 1.00 𝑜𝑝𝑡 = O(|𝐸 | · 2𝛺 (𝛾 ) )

We report true positive rate (TPR) and true negative rate (TNR). The “Oracle+AV” row shows a hypothetical

optimal case where an oracle correctly identifies all equivalent pairs, which are then verified. We assume

a verifier with perfect recall. 𝑛 is the number of subexpressions, 𝛾 is the number of symbols in the AV’s

SAT formulation, and 𝐸 is the set of equivalent subexpression pairs. GEqO verifies 𝜖 more pairs than the

oracle, which we empirically show to be ∼5–10% (see Section 7.5).

Next, GEqO’s equivalence model filter (EMF ) employs a novel, high-precision, supervised ML

model trained over a workload sample to predict semantic equivalence. As we detail below, the

EMF is database- and schema-agnostic and can be easily transferred to other workloads. As far as

we are aware, GEqO is the first work to present a machine-learning-accelerated framework for

detecting semantic equivalence at scale.

A key challenge in training the EMF is the need for large amounts of labeled data. Although the

cloud makes collecting query workloads much more accessible, labeling the equivalent subexpres-

sions within the workload requires running expensive equivalence verifiers on all subexpression

pairs (i.e., trillions of invocations). To reduce this cost, GEqO employs a semi-supervised feedback

loop (SSFL) pipeline that iteratively improves the accuracy of the EMF until it matures. The SSFL
employs inexpensive filters (i.e., the SF and VMF ) to ensure approximately balanced classes in its

generated training data. This approach enables GEqO to both avoid the cold start training problem

and fine-tune its EMF model as new workload data becomes available for training.

A second challenge addressed by GEqO involves ensuring that its learned EMF model is not tied to

a fixed database schema. For example, the EMF should be able to determine that the subexpressions

shown in Figure 1 are equivalent even if table A’s name was replaced with C. Unlike existing

instance-based ML-for-DB solutions [25], GEqO uses a database and schema-agnostic approach

that focuses on learning general semantic equivalence patterns. It accomplishes this during EMF
featurization by replacing references to database schema with symbolic correspondences. This

allows GEqO to pretrain on existing database workloads and apply the resulting model to new

database workloads.

GEqO is a standalone framework that can be used alongside a query optimizer to complement its

ability to detect equivalent computation. Unlike adding new rewrite rules, which requires changing

the core database engine code, GEqO can learn any equivalence relationship in a workload, including

those missed by the optimizer. We currently focus on subexpressions that contain selections,

projections, and joins (i.e., SPJ subexpressions) with conjunctive predicates.

Through detailed experiments, we demonstrate the efficiency and effectiveness of GEqO in

detecting common computations. We systematically evaluate its filters and discuss their trade-offs

between prediction accuracy and the overhead involved.
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Contributions. The paper makes the following contributions:

• We introduce GEqO, a scalable ML-framework for detecting semantically-equivalent subex-

pressions. GEqO’s novel VMF and EMF filters quickly prune non-equivalent subexpressions,

reducing the overhead of running expensive equivalence verifiers by up to 200× (§2).

• We introduce a database agnostic featurization technique that generalizes instance-specific

(non)equivalent subexpression pairs into (non)equivalent patterns, making the EMF transfer-

able to new workloads and databases (§4).

• We address the challenge of requiring large volumes of labeled training data by introducing

a semi-supervised feedback loop (SSFL) to iteratively improve GEqO’s EMF filter (§6). This

process is aided by drawing high-quality samples leveraging the cheaper SF and VMF filters.

• Our evaluation demonstrates the efficiency and effectiveness of GEqO (§7).

2 PRELIMINARIES AND OVERVIEW
This section defines the key concepts used in the paper and provides an overview of GEqO.

2.1 Problem definition
GEqO assumes that a SQL query can be transformed into a tree (i.e., a logical plan) 𝑄 consisting

of operator nodes (we use 𝑜𝑝𝑠 (𝑄) to denote the set of all operators in 𝑄). We term each subtree

rooted at node 𝑖 to be a subexpression 𝑞𝑖 of𝑄 . Let 𝑆 (𝑄) = {𝑞1, ..., 𝑞𝑛} be the set of all subexpressions
induced by𝑄 . Note that𝑄 ∈ 𝑆 (𝑄); the root of the logical plan is itself a (trivial) subexpression of𝑄 .

GEqO assumes that as a subtree in a logical query plan, subexpressions are unambiguously

executable. Let 𝑞𝑖 (𝑑) denote the result of executing subexpression 𝑞𝑖 on some database instance 𝑑 .

Let 𝐷 be the set of all database instances. Given two subexpressions 𝑞𝑖 and 𝑞 𝑗 , they are semantically
equivalent, denoted as 𝑞𝑖 ≡ 𝑞 𝑗 , if and only if ∀𝑑 ∈ 𝐷,𝑞𝑖 (𝑑) = 𝑞 𝑗 (𝑑). Note that 𝑞𝑖 and 𝑞 𝑗 need not be

drawn from the same query𝑄 , and that this definition holds under both set and bag semantics [11].

An equivalence verifier applies an automated technique (e.g., a proof assistant [14] or formal

solver [17]) to decide 𝑞𝑖 ≡ 𝑞 𝑗 . We denote equivalence determined using an automated verifier𝐴𝑉 as

𝑞𝑖
AV≡ 𝑞 𝑗 . A verifier is correct but not complete (i.e., (𝑞𝑖

AV≡ 𝑞 𝑗 ) ⇒ (𝑞𝑖 ≡ 𝑞 𝑗 ) but (𝑞𝑖 ≡ 𝑞 𝑗 ) ⇏ (𝑞𝑖
AV≡ 𝑞 𝑗 ))

and in general run in exponential time. Finally, given a pair of subexpressions, an equivalence filter
applies a model, heuristic, or similar technique to approximately decide equivalence (i.e., pseudo-
equivalence). In GEqO, filters trade off speed and precision to reduce the false positives that must

be checked by an equivalence verifier. We denote pairwise pseudo-equivalence determined using a

filter 𝑓 as 𝑞𝑖
f∼∼∼ 𝑞 𝑗 .

Given the above, we now formally define the core problem addressed by GEqO:

Problem (Workload eqivalence). Given a workload𝑊 = {𝑞1, ..., 𝑞𝑛} of subexpressions, GEqO
approximates 𝐸 (𝑊 ) = {(𝑞𝑖 , 𝑞 𝑗 ) ∈𝑊 ×𝑊 | 𝑞𝑖 ≡ 𝑞 𝑗 }, i.e., the equivalence set amongst all the pairwise
combinations of subexpressions in𝑊 .

There are two important special cases of the workload equivalence problem. In the first case, the

workload just has a pair of subexpressions𝑊 = {𝑞𝑖 , 𝑞 𝑗 }. The task reduces to just detecting pairwise
equivalence (𝑞𝑖 ≡ 𝑞 𝑗 ). This version of the problem is common for applications such as query rewriting

or view matching. The second special case is when the input is a set of queries {𝑄1, ...𝑄𝑚}. Then
the workload is the enumeration of all the subexpressions of the input queries, i.e.,𝑊 =

⋃
𝑘 𝑆 (𝑄𝑘 ).

This formulation is of critical importance to applications such as view recommendation, when

the goal is to find common computation among a large set of queries. Although GEqO can handle

pairwise equivalence detection very well, it is designed more as an efficient and scalable solution

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 223. Publication date: December 2023.



223:6 Brandon Haynes et al.
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Fig. 2. GEqO Overview

for supporting general workload equivalence when the workload set𝑊 is large (which includes

the second special use case).

2.2 GEqO Overview
The overall architecture of GEqO is illustrated in Figure 2. GEqO approximates computing an

equivalence set by applying the series of filters 𝐹 = ⟨𝑓1, ..., 𝑓𝑛⟩ listed in Table 1 to a workload of

subexpressions. Filters are applied in decreasing order of speed and increasing order of precision.

Each filter is applied to every subexpression pair in the target workload𝑊 to approximate the

equivalence set. To ensure correctness (e.g., for use in a view materialization algorithm), GEqO

utilizes an automated verifier to eliminate false positives from the resulting equivalence set. It is

important to note that if a pair is determined to be non-equivalent by a filter, it is not evaluated by

subsequent filters and it is not verified (i.e., filters short-circuit).

We formalize the above process with the following two functions:

𝐺𝐸𝑞𝑂
set
(𝑊, 𝐹 ) = {(𝑞𝑖 , 𝑞 𝑗 ) ∈𝑊 ×𝑊 | 𝐺𝐸𝑞𝑂pair

(𝑞𝑖 , 𝑞 𝑗 , 𝐹 )} (1)

𝐺𝐸𝑞𝑂
pair
(𝑞𝑖 , 𝑞 𝑗 , 𝐹 ) =


𝑞𝑖

AV≡ 𝑞 𝑗 if 𝐹 = ∅

⊥ if 𝑞𝑖
𝑓1

̸∼∼∼ 𝑞 𝑗

𝐺𝐸𝑞𝑂
pair
(𝑞𝑖 , 𝑞 𝑗 , 𝐹 \ 𝑓1) otherwise

(2)

2.2.1 Detecting an Equivalence Set for a Large Workload. We now describe, given a large

workload of subexpressions, how GEqO applies the filters in Table 1 to efficiently narrow down the

candidate equivalent subexpression pairs, before calling the expensive automated verifier (AV).

The first filter applied is the widely-used schema filter (SF). Subexpressions that access different
sets of tables or return different numbers of columns are highly unlikely to be equivalent. Therefore,

GEqO groups all subexpressions in the workload based on the tables used and the number of

columns returned, resulting in SF-groups. From this point forward, only subexpression pairs from

the same SF-group are considered by subsequent filters.

In the second step, for each SF-group, the vector matching filter (VMF) embeds the subexpressions

in a learned vector space and identifies likely equivalent pairs by employing approximate nearest

neighbor search (ANNS). It is formalized as follows:

Definition 2.1 (Vector matching filter (VMF )). Let 𝑒 (𝑞) be a function that embeds a subex-
pression 𝑞 in a vector spaceV . Let 𝑑 be a distance metric onV and 𝜏 be a threshold distance. Given

subexpressions 𝑞1 and 𝑞2, let 𝑞1
VMF∼∼∼ 𝑞2 when 𝑑 (𝑒 (𝑣1), 𝑒 (𝑣2)) < 𝜏 .
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To further improve efficiency, we construct a hierarchical navigable small world (HNSW) in-

dex [35], a common approach to applying ANNS at scale [27].

In the third step, GEqO applies the equivalence model filter (EMF), which is a trained deep learning
model, to predict whether each candidate subexpression pair from the VMF filter are equivalent.

Finally, GEqO utilizes an automated verifier (AV) (we leverage SPES [54]) to verify the correctness
of the prediction from EMF .
Among the filters used in GEqO, both VMF and EMF are machine learning based. The EMF is

a deep learning model comprising multiple tree convolutions and fully connected layers. On the

other hand, the VMF utilizes the learned tree convolution from EMF to embed subexpressions into

its metric space.

2.3 Equivalence Model Filter (EMF) Overview
The EMF is a deep learning model trained to classify equivalence. We now briefly describe its

training process and the semi-supervised feedback loop (SSFL) to iteratively improve the model.

To train the EMF , GEqO first featurizes (§3) and labels a set of subexpression pairs as the

training data. Labels are generated using the SPES automated verifier. During featurization, in

addition to converting subexpressions to a fixed-length vector representation, the EMF applies its

database-agnostic (db-agnostic) transformation (§4.2). This transformation replaces references to

specific tables and column names with symbolic correspondences between subexpression pairs,

generalizing the EMF learning from specific examples of (non)equivalent subexpressions to patterns
of (non)equivalent subexpressions. It also ensures that the model learned on a particular workload

and database is transferable to other workloads and databases, allowing for user-supplied or

synthetically generated initial training workloads (§5).

GEqO employs the SSFL as a guardrail against regressions. It monitors the confidence levels of

EMF ’s predictions, and if confidence falls below a threshold (e.g., due to new or evolving workloads),

it iteratively fine-tunes the EMF model through the SSFL pipeline.

The key challenge in the SSFL pipeline is generating high-quality samples with balanced positive

and negative examples for model fine-tuning in each iteration. Even a modest workload produces

an intractably large training dataset that is quadratic in the number of subexpression pairs—1000

queries with 10 subexpressions each produces a training dataset of almost 100 million pairs! This

dataset is also highly imbalanced, since most subexpression pairs are unlikely to be equivalent.

To address this challenge, GEqO employs the cheap SF and VMF filters to efficiently identify

pseudo-equivalent subexpression pairs (i.e., it computes 𝑞𝑖
SF∼∼∼ 𝑞 𝑗 ∧ 𝑞𝑖

VMF∼∼∼ 𝑞 𝑗 over a workload sample).

This computation approximates Equation 2 without the verification step (§2.2.1). Together with

another set of randomly-generated, likely non-equivalent pairs, they form an approximately-

balanced new sample. As before, GEqO labels and applies its db-agnostic transformation to the

new sample. It then augments its training dataset with the new data and fine-tunes the EMF .
As previously highlighted, GEqO identifies general semantic equivalence, agnostic to the un-

derlying database. It therefore does not consider database constraints or other instance-specific

metadata. Nonetheless, extending GEqO to incorporate database-specific constraints [15] remains

an interesting direction for future work.

2.4 Complexity Analysis of GEqO Filters
This subsection provides a complexity analysis (summarized in Table 1) for applying each GEqO

filter on a workload𝑊 containing 𝑛 subexpressions.

Schema Filter (SF). Assuming a constant-sized schema, GEqO groups 𝑛 subexpressions by the

used tables and the number of returned columns in O(𝑛) time.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 223. Publication date: December 2023.
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Vector Matching Filter (VMF). Given that the HNSW index used by the VMF has claimed

search complexity logarithmic in the number of indexed objects [35], GEqO indexes the workload

subexpressions in O(𝑛) time (we assume a constant embedding size; see §7). Next, for each vector, it

performs a O(log𝑛) radius search for neighbors within Euclidean distance 𝜏 , with total complexity

in O(𝑛 log𝑛).

Equivalence Model Filter (EMF). As shown in §5, GEqO’s equivalence model contains two

convolution layers followed by three fully connected layers. Its input is a pair of subexpressions,

each with 𝑜𝑝𝑠 (𝑞𝑖 ) nodes. We assume that there are many more subexpressions in our workload than

operators in the largest tree, i.e., max{𝑜𝑝𝑠 (𝑞𝑖 ) | 𝑞 ∈𝑊 } ≪ 𝑛. Total complexity is thus dominated

by the matrix multiplication in the fully connected layers (i.e., O(𝑛3)).2

Automated Verification (AV). To ensure correctness, GEqO verifies pairs produced by its filters.

GEqO’s AV leverages SPES [54], which uses the Z3 SMT prover [13] to check equivalence. A SMT

program can be transformed into an equivalent SAT formulation containing 𝛾 symbols, which is

solvable in O(2𝛺 (𝛾 ) ) time.

3 FEATURE ENGINEERING
In this section, we describe the features used by the EMF (§3.1) and how these features are mechan-

ically featurized (§3.2).

3.1 Feature Selection
After conducting extensive feature analysis, we find that logical plans play the most important role

in predicting equivalence, since the logical plan captures the semantics of a subexpression. As a

result, in GEqO, we use the logical plans of the subexpression pairs as inputs to the EMF model.

We additionally considered leveraging cardinalities as an auxiliary feature. Intuitively, since

𝑞𝑖 ≡ 𝑞 𝑗 ⇒ |𝑞𝑖 | = |𝑞 𝑗 |, this would appear to be a strongly positive signal for equivalence. However,

while our initial analysis indicates that cardinalities do improve EMF recall, actual subexpression

cardinalities are not generally available for use as inputs to GEqO and executing candidate subex-

pressions to determine cardinality is infeasible at scale. Conversely, estimated cardinalities are

quick to compute but yield only marginal benefit to the prediction task. Thus, we exclusively rely

on logical plans as input features to EMF .
GEqO canonicalizes the conjunctive predicates in selection and join operators by splitting each

𝑛-clause predicate into a composite containing 𝑛 single-clause predicates. For example, GEqO

transforms a relational selection operator 𝜎x>25∧y<10000 (𝑅), into the composite 𝜎x>25 (𝜎y<10000 (𝑅)).
As a result, each node in the logical plan has at most one selection or join predicate.

3.2 Logical Plan Featurization
Featurizing the tree structure of a logical plan is challenging since it is difficult to express an

arbitrarily-shaped, variable-size tree as a fixed-size feature vector without losing the structure of

the tree. To address this, we apply a tree-vector transformation that converts an arbitrary logical

plan into a fixed-length vector [39]. Our transformation is inspired by [37]; however, we use a

different encoding for each node in the tree.

Specifically, we first encode each node in the logical plan as a node vector (NV). Each NV has the

same size and format (to be described in §4), but the number of NVs (i.e., number of nodes in the

logical plan) can vary widely. Given a tree of NVs, GEqO next performs a breath-first traversal of

the tree and concatenates each visited NV into a𝑚× 𝑙 matrix𝑀 , where𝑚 is the number of nodes in

2
The two convolution layers are each in O(𝑛2) [49].
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σ

Fig. 3. Instance-based node vector encoding of an SPJ subexpression. Each operator’s metadata is converted
to its “vector segment”; unrelated segments are set to zero.

a logical plan and 𝑙 is the size of each NV. We finally apply the tree convolution layers of the EMF ,
to be described in §5, which transforms𝑀 into a vector of a fixed dimension ℎ that summarizes a

subexpression. In our prototype, ℎ = 128 bytes. As demonstrated by prior work [36, 37, 40], tree

convolution has been proven effective at representing tree-structured SQL query plans for various

ML-for-DB tasks.

4 LOGICAL PLAN ENCODING
We now detail how GEqO encodes each node in a logical plan as a node vector (NV). We begin by

describing an instance-based encoding, i.e., one where the encoding is specific to a workload on a

particular database instance. Though the specifics vary, this is a common transformation and most

existing approaches are instance-based [25, 37, 42]. We then extend this approach to our novel

db-agnostic encoding which is oblivious to the specific workload or database.

4.1 Instance-Based Encoding
Notation. Our instance-based encoding is inspired by the encoding technique described in [25].

Given a workload𝑊 on a database instance, let 𝑇𝑊 , 𝐶𝑊 , 𝑂𝑊 , and 𝐽𝑊 respectively represent the set

of tables, columns, arithmetic operators (e.g., ≤, =, ≥, ≠), and join types (⊲⊳, Z, Z , ⊲⊳ ) referenced in

the workload. Let 𝑜𝑛𝑒ℎ𝑜𝑡 (𝑒,𝑈 ) produce a one-hot encoded vector of size |𝑈 | with entry 𝑒 ∈ 𝑈 set

to one, 𝑛𝑢𝑙𝑙 (𝑥) indicate whether 𝑥 is null, and 𝑛𝑜𝑟𝑚(𝑥) normalize 𝑥 over all scalars in a workload.

Encoding method. Figure 3 illustrates the instance-based encoding process. Each NV consists

of table, join and selection segments, denoted as 𝑉table, 𝑉join, and 𝑉select, respectively. For a scan

operator on table 𝑡 , GEqO generates the segment 𝑉table = 𝑜𝑛𝑒ℎ𝑜𝑡 (𝑡,𝑇𝑊 ). For a selection operator

with a predicate referencing a column 𝑐 , an arithmetic operator 𝑜 , and up to one constant value 𝑣 (we

perform constant folding prior to encoding), GEqO generates the segment𝑉select = 𝑜𝑛𝑒ℎ𝑜𝑡 (𝑐,𝐶𝑊 ) ⊕
𝑜𝑛𝑒ℎ𝑜𝑡 (𝑜,𝑂𝑊 ) ⊕𝑛𝑜𝑟𝑚(𝑣) ⊕𝑛𝑢𝑙𝑙 (𝑣), where ⊕ is the concatenation operation. Finally, a join operator

has a join predicate referencing a left-side column 𝑐𝑙 , an arithmetic operator 𝑜 , right-side column

𝑐𝑟 , and a join type 𝑗 . GEqO generates the join segment 𝑉join = 𝑜𝑛𝑒ℎ𝑜𝑡 (𝑐𝑙 ,𝐶𝑊 ) ⊕ 𝑜𝑛𝑒ℎ𝑜𝑡 (𝑜,𝑂𝑊 ) ⊕
𝑜𝑛𝑒ℎ𝑜𝑡 (𝑐𝑟 ,𝐶𝑊 ) ⊕ 𝑜𝑛𝑒ℎ𝑜𝑡 ( 𝑗, 𝐽𝑊 ).

As is common in ML featurization, we simply concatenate the table, join, and selection segments

to form the final vector, i.e. 𝑁𝑉 = 𝑉table ⊕ 𝑉join ⊕ 𝑉select. For a segment that does not apply to a tree

node, GEqO sets it to be zero, e.g. the join segment for a non-join operator is all zeros. Note that

|𝑁𝑉 | = |𝑇𝑊 | + 3 · |𝐶𝑊 | + 2 · |𝑂𝑊 | + |𝐽𝑊 | + 2 (in our prototype |𝑁𝑉 | = 210; see §7).
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q1: SELECT t1.c3, t2.c3 FROM t1,t2
WHERE t1.c1 = t2.c1

AND t1.c2 > t2.c2 + 10
AND t2.c2 > 10

q2: SELECT t1.c3, t2.c3 FROM t2,t1
WHERE t2.c1 = t1.c1

AND t2.c2 + 10 < t1.c2
AND t2.c2 + 10 > 20
AND t1.c2 > 20

Fig. 4. Symbolized versions of the subexpression pairs highlighted
in Figure 1.

Reference Symbol

A t1

A.joinKey t1.c1

A.val t1.c2

A.x t1.c3

B t2

B.joinKey t2.c1

B.val t2.c2

B.y t2.c3

Table 2. Symbols generated for queries
in Figure 1 under db-agnostic encoding.

C

q1  Node Vectors 

⋈
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⋈
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0001
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Plan Matrix (𝑴) Submatrix 𝑺𝟐 = 𝑴𝟐 𝑻

𝑟1 = 𝑐𝑜𝑙𝑢𝑚𝑛𝑤𝑖𝑠𝑒𝑈𝑛𝑖𝑜𝑛(𝑆1) = [0110] 𝑆!" = 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝐶𝑜𝑙𝑠(𝑆1, 𝑚1,2
) =

000
100
010

𝑀!
# =

000…
100…
010…

𝑟2 = 𝑐𝑜𝑙𝑢𝑚𝑛𝑤𝑖𝑠𝑒𝑈𝑛𝑖𝑜𝑛(𝑆2) = [0011] 𝑆$" = 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝐶𝑜𝑙𝑠(𝑆2, 𝑚1,2
) =

010
001
010

𝑀$
# =

010…
001…
010…

𝑚1,2
= 𝑟1 ∨ 𝑟2 = [0111] 𝑢𝑛𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑑𝐶𝑜𝑙𝑠(𝑚1,2

) = 1

Fig. 5. Example of converting instance-based to db-agnostic encoding (table segments only).

4.2 DB-Agnostic Encoding
Instance-based encoding makes sense for solving problems such as cardinality estimation and query

optimization, where the solution targets a specific workload on a particular database instance. In

contrast, the problem of learning equivalent subexpressions can be reformulated to be database
agnostic. To motivate, consider the two subexpressions highlighted in Figure 1. If we were to change

the table and column names to those shown in Figure 4, the two new subexpressions remain

equivalent, even though they are now for a completely different database, workload, or dataset.

This observation is the basis for our db-agnostic node vector encoding technique. Conceptually,

for each labeled training data point, we generalize the pair of subexpressions into subexpression

patterns, and feed these generalized patterns into our model. As a result, we are able to transfer the

learning from one workload for a database instance to a different workload on a different database.

For equivalence detection, what really matters is the tables and columns referenced in the pair

of subexpressions. Further, in terms of columns, only the columns actually referenced by the join

conditions, selection predicates, and projections (instead of all columns from the referenced tables)

need to be considered. Moreover, the actual names of the tables and columns are unimportant. As a

result, we can convert the tables and columns in a pair of subexpressions into a generic symbolic

form to derive their underlying patterns.

GEqO does this by transforming referenced tables into a set of distinct, generic table symbols

{𝑡1, ..., 𝑡𝑛} based on an arbitrary lexicographical order (we sort alphanumerically in our implementa-

tion). It similarly symbolizes the referenced columns as 𝑐1,..., 𝑐𝑛 . Table 2 shows this for the example

in Figure 4.
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With db-agnostic encoding, we set 𝑇 ′
𝑊

= {𝑡1, ..., 𝑡𝑛}, where 𝑛 is the maximum number of symbol-

ized table correspondences expected in any workload, and 𝐶 ′
𝑊

= {𝑡1 .𝑐1, ..., 𝑡1.𝑐𝑚, ..., 𝑡𝑛 .𝑐1, , ..., 𝑡𝑛 .𝑐𝑚},
where 𝑚 is the maximum number of symbolized column correspondences per table expected

in any workload. We can set 𝑛 and𝑚 to be large enough numbers to cover arbitrarily complex

subexpressions. However, in general 𝑛 and 𝑛 ×𝑚 are much smaller than the total number of tables

and columns in the workload, respectively.

Following this transformation, we now treat 𝑇 ′
𝑊

and 𝐶 ′
𝑊

as our new “workload tables” and

“workload columns” to replace 𝑇𝑊 and 𝐶𝑊 described in §4.1. Then to encode, for each pair

of subexpressions, we first symbolize each subexpression into symbolic pattern and apply the

previously-introduced instance-based encoding to produce a final db-agnostic encoding 𝑁𝑉 𝛼 of

size |𝑁𝑉 𝛼 | = |𝑇 ′𝑊 | + 3 · |𝐶 ′𝑊 | + 2 · |𝑂𝑊 | + |𝐽𝑊 | + 2.

4.2.1 Scaling to large workloads. The db-agnostic encoding described above is for a pair of subex-

pressions. The encoding of one subexpression is different depending upon which other subexpres-

sion it is paired with during featurization. Given a large workload of 𝑛 subexpressions, we have to

re-compute the encoding for each pair—an 𝑂 (𝑛2) computation. In contrast, in the instance-based

encoding, the encoding of one subexpression stays unchanged no matter what it is paired with.

In other words, we only need to compute the encoding for each subexpression once (an 𝑂 (𝑛)
computation). For offline training, the performance of db-agnostic encoding is not so crucial, but for

online inference any improvement in the encoding process is valuable. To speed up the db-agnostic

encoding process, we develop an efficient method to quickly convert an instance-based encoding

to a db-agnostic encoding. With this approach, we only incur 𝑂 (𝑛) computation to produce the

instance-based encoding, then apply a lightweight converter for each pair of subexpressions.

The converter takes as input the instance-based tree matrices for both subexpressions. For each

subexpression, it first projects out the submatrix 𝑆𝑇 = 𝑀 [𝑇 ] that corresponds to the table segment,

and the submatrices 𝑆𝐶𝑠
= 𝑀 [𝐶𝑠 ], 𝑆𝐶𝑙

= 𝑀 [𝐶𝑙 ], and 𝑆𝐶𝑟
= 𝑀 [𝐶𝑟 ] that correspond to the column

encoding from the selection segment, the left-side column encoding, and the right-side column

encoding from the join segment. We first union the column submatrices by applying bit-wise 𝑜𝑟

to compute the column submatrix 𝑆𝐶 = 𝑆𝐶𝑠
∨ 𝑆𝐶𝑙

∨ 𝑆𝐶𝑟
. For the table submatrix 𝑆𝑇 , we compute a

vector 𝑟 that represents the column-wise union of the tables referenced in each subexpression, with

𝑟 𝑗 =
∨

𝑖 𝑆𝑇 [𝑖, 𝑗]. Next, we generate a mask𝑚𝑇 by unioning the vectors from both subexpressions;

this represents all tables referenced in either of subexpressions. We then apply this mask on 𝑆𝑇
from both subexpressions to eliminate matrix columns corresponding to unreferenced tables. The

resulting submatrix is 𝑆 ′
𝑇
. We apply the same process on the column matrices to compute the

mask𝑚𝐶 , and use𝑚𝐶 to eliminate matrix columns corresponding to unreferenced table columns

from 𝑆𝐶𝑠
, 𝑆𝐶𝑙

, and 𝑆𝐶𝑟
for each subexpression, resulting in 𝑆 ′

𝐶𝑠
, 𝑆 ′

𝐶𝑙
, and 𝑆 ′

𝐶𝑟
. Finally, for each

subexpression in the pair, we replace the submatricies 𝑆𝑇 , 𝑆𝐶𝑠
, 𝑆𝐶𝑙

, and 𝑆𝐶𝑟
with their transformed

variants. The result is a pair of db-agnostic tree matrices𝑀𝛼 which eliminates references not found

in either subexpression. Figure 5 illustrates the conversion process for table fragments in a pair of

subexpressions.

Through experiments, we find that applying the converter described above is 1.8× faster than
computing pairwise db-agnostic encodings from scratch.

4.2.2 Tensor-based extensions. In the previous subsection we described the db-agnostic encoding

process for a single pair of subexpressions. We now describe two tensor-based extensions.

Batch pairwise encoding. Db-agnostic encoding can be easily extended to support batch

encoding𝑛 pairs. To do so, rather than performing𝑛 discrete operations on pairs of two-dimensional

submatrices of size |𝑞𝑖 | × |𝑋 |—where |𝑞𝑖 | represents the number of tree nodes in a subexpression’s
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Fig. 6. The EMF architecture. Instance-based encoding (𝑁𝑉 ) (§4.1); db-agnostic encoding (𝑁𝑉𝛼 ) (§4.2).

logical plan and 𝑋 is a table or column segments of the NV—GEqO represents the batch as a pair

of three-dimensional tensors of size max( |𝑞𝑖 |) × |𝑋 | × 𝑛. Subexpressions with fewer than max(𝑞𝑖 )
operators are zero-padded, which does not affect correctness.

The resulting tensor is amenable to being operated on using tensor-oriented frameworks such as

PyTorch [43]. As we describe in Section 5, the EMF batch-converts workloads using this approach.

Generalizing from pairs to 𝒏-subexpressions. The db-agnostic transformation we describe

above is a binary operation over two subexpressions. A second generalization involves extending it

to be an 𝑛-ary operation over many subexpressions. This extension only impacts the computation

of the mask (e.g., in Figure 5, rather than 𝑟1 ∨ 𝑟2 we compute 𝑟1 ∨ ... ∨ 𝑟𝑛); other operations are
unchanged. This extension is also amenable to tensor execution.

In fact, this 𝑛-ary, tensor-based encoding is used in the VMF filter in GEqO. Recall that after

applying the SF filter, GEqO groups input workload into SF-groups based on tables accessed and

the number of columns returned (§2.2.1). In the VMF , GEqO then applies the 𝑛-ary db-agnostic

transformation to all subexpressions in each SF-group. It then convolves the encoded node vectors

to produce a fixed-size vector for each subexpression (§3.2). It finally conducts an approximate

nearest-neighbor search (ANNS) on the resulting vectors to identify candidate subexpression pairs

that are likely to be equivalent. Note that all subexpressions in an SF-group access the same set

of tables. Therefore, the group-based db-agnostic encodings for subexpressions from the same

SF-group approximate their pairwise db-agnostic counterparts.

5 EQUIVALENCE MODEL FILTER (EMF)
In this section, we discuss the architecture and training process of the equivalence model filter (EMF ).
Recall from §2.3 that the EMF is a schema-independent deep learning model trained to classify

equivalence between a pair of subexpressions. In building the EMF , we evaluated many candidate

architectures, including various supervised classifiers, logistic regression (LR) [41], random forests

(RF) [26], and multi-layer perceptrons (MLP) [19]. While the LR and RF models are simple to train

and exhibit moderate performance, they suffered from one fundamental limitation: they do not

allow incremental training and fine-tuning. As we detail in §6, the ability to incrementally fine-tune

a model is critical to adapting to changing workloads and maximizing transferability. On the other

hand, MLPs are more expensive to train but support incremental training, thus we only need to

feed newly-labeled samples to fine-tune the previous model.

As a result, we utilize the MLP model for classification in the EMF . The overall architecture of the
EMF is illustrated in Figure 6. It comprises two tree convolution layers and three fully connected

layers. As inputs, the EMF accepts a pair of instance-encoded logical plans, where each node is

an instance-encoded vector of size |𝑁𝑉 | (see §4.1). These plans are then transformed into their

db-agnostic counterparts (i.e., vectors of size |𝑁𝑉𝛼 |) by applying the transformation described in
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Fig. 7. Mean error by linear and convolution layer sizes.

§4.2. Next, the EMF applies two tree convolutions to the db-agnostic plans. Each convolution is

followed by batch normalization and parametric rectified linear unit (PReLU) activation. The two

resulting 128-byte summaries of each subexpression logical plan are then concatenated and passed

through three fully connected layers for classification.

EMF training and testing data. To train the EMF , GEqO requires a large set of labeled training

data (i.e., subexpression pairs). Because our db-agnostic encoding technique enables transferability

between workloads and database instances, we can initially train the EMF model on a high-quality

synthetic workload that contains a wide range of positively- and negatively-labeled subexpression

pairs. To generate such data, we leverage two state-of-the-art query generation tools: AMOEBA [34]

and WeTune [50].

AMOEBA employs a domain-specific fuzzing technique to generate a set of base queries 𝐵𝑄 .

It then applies a set of semantic-preserving query rewrite rules 𝑅 on a given query 𝑞𝑖 ∈ 𝐵𝑄 and

generates a set of queries 𝑄 ′𝑖 = {𝑞′1𝑖 , ..., 𝑞′𝑛𝑖 } equivalent to 𝑞𝑖 .
GEqO leverages AMOEBA by applying it to produce a dataset of positively-labeled pairs𝑊+ =⋃
𝑖 {(𝑞𝛼 , 𝑞𝛽 ) | 𝑞𝛼 ∈ 𝑄 ′𝑖 ∪ {𝑞𝑖 } ∧ 𝑞𝛽 ∈ 𝑄 ′𝑖 ∪ {𝑞𝑖 } \ 𝑞𝛼 }.
To ensure a wide variety of training examples, we further leverage WeTune [50], which is an

optimizer rule generator that automatically generates a set of non-reducible and interesting rewrite

rules (including rules missed by prominent commercial query optimizers). We apply WeTune-

generated rules to rewrite the set 𝐵𝑄 of base queries produced by AMOEBA. We then repeat the

process described above to produce a WeTune-augmented training data set𝑊 ′
+ .

The above process yields a diverse set of equivalent subexpression pairs. To generate a corre-

sponding set of non-equivalent pairs, we group all subexpressions in 𝐵𝑄 into schema-compatible

groups ({𝐵1

𝑄
, ..., 𝐵𝑛

𝑄
}) by applying the SF . Each group contains subexpressions that reference the

same base tables and return the same number of columns (i.e., they are non-degenerate and would

not be subsequently filtered by the SF ). Next, we generate a set of negative examples by randomly

pairing the subexpressions in each group:𝑊− = {(𝑞𝛼 , 𝑞𝛽 ) | 𝑞𝛼 , 𝑞𝛽 ∈ 𝐵𝑖𝑄 ∧ (𝑞𝛼 , 𝑞𝛽 ) ∉𝑊+}. While

this process might (with low probability) yield a false negative (i.e., by negatively labeling a pair

that is actually equivalent), model training is resilient to small amounts of noise in training data

and we did not observe a decrease in performance. Nonetheless, a perfect dataset could be produced

by applying the automated verifier (AV) to confirm the label of each negative pair.

Using the above, GEqO finally draws a balanced set of labeled examples from 𝑊+ and 𝑊−
to produce a synthetic training dataset that contains a variety of syntactically dissimilar and

semantically equivalent logical plans. This, along with well-known machine learning techniques

such as tree convolution and dynamic pooling [39] that provide resiliency to minor perturbations,

enables GEqO to generalize to plans of varying shapes and sizes.
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Algorithm 1: The semi-supervised feedback loop (SSFL).
Input: A workload𝑊 .

Output: A EMF model, fine-tuned if confidence is low.

1 function 𝑆𝑆𝐹𝐿(𝑊 ):
2 𝑃0 ← ∅
3 𝑃1 ← ∅
4 foreach (𝑞𝑖 , 𝑞 𝑗 ) ∈𝑊 ×𝑊 do
5 𝜌 ← 𝑆𝑖𝑔𝑚𝑜𝑖𝑑

(
𝐸𝑀𝐹 (𝑞𝑖 , 𝑞 𝑗 )

)
6 𝑃1 ← 𝑃1 ∪ {𝜌}
7 𝑃0 ← 𝑃0 ∪ {1 − 𝜌}
8 if 𝑆𝑆𝐹𝐿-𝐶𝐿(𝑊, 𝑃0, 𝑃1) ≤ 𝑇ℎ then
9 𝑆+ ← 𝐴𝑉

(
𝑉𝑀𝐹

(
𝑆𝐹 (𝑊 ×𝑊 )

) )
10 𝑆− ← 𝑠𝑎𝑚𝑝𝑙𝑒

(
(𝑊 ×𝑊 ) \ 𝑆+, |𝑆+ |

)
11 EMF← 𝑡𝑟𝑎𝑖𝑛(EMF, 𝑆+ ∪ 𝑆−)
12 return EMF

Hyperparameter tuning. To maximize EMF performance, we perform a search over model

structure and hyperparameters. Our search considers various network architectures (i.e., between

1–5 linear and convolution layers and sizes 32–512), activation functions, dropout, and optimizer

parameters such as learning rate and decay. We evaluate on the synthetic dataset based on TPC-H

as described in §7.

As we show in Figure 7, we find that increasing the number of convolution and hidden layers

beyond two did not improve accuracy. Layer sizes have a modest impact on accuracy. Optimizer

choice and learning rate had a negligible impact on performance.

6 SEMI-SUPERVISED FEEDBACK LOOP (SSFL)
When applied to a new workload or as the distribution of (non)equivalent subexpressions in

a workload drifts over time, the performance of the previously-trained EMF model may suffer.

To mitigate this, GEqO employs a semi-supervised learning bootstrapping feedback loop (SSFL)
inspired by Zhu et al. [55]. The SSFL continuously monitors EMF performance and retrains with

newly-generated training data when needed.

To accomplish this, GEqO continuously measures the confidence level of classifications made by

the EMF . If this confidence level falls below a threshold 𝑇ℎ , the SSFL dynamically samples a new,

balanced set of labeled samples from the current workload. It uses this sample to fine-tune the

EMF . The SSFL iterates this process until EMF performance reaches a desirable confidence level.

We formalize the SSFL confidence level as follows:

Definition 6.1 (SSFL Confidence Level). Let 𝑊 be a set of queries we wish to compute
𝐺𝐸𝑞𝑂set (𝑊, 𝐹 ) over (q.v. Equation 1). Let 𝑃𝑝

1
be the probability estimate that the pair 𝑝 ∈𝑊 ×𝑊 ex-

hibits an equivalence relationship, and 𝑃𝑝
0
the probability that 𝑝 exhibits a non-equivalence relationship.

We compute the SSFL confidence Level 𝑆𝑆𝐹𝐿-𝐶𝐿 of𝑊 as follows:

𝑆𝑆𝐹𝐿-𝐶𝐿(𝑊, 𝑃0, 𝑃1) =
∑

𝑝∈𝑊 ×𝑊
[
max(𝑃𝑝

0
, 𝑃

𝑝

1
) ≥ 𝑇ℎ

]
|𝑊 ×𝑊 |

Ideally, we want the semi-supervised learning feedback to only trigger a few rounds of fine-

tuning before it reaches a satisfactory confidence level. In order to achieve this, we need to choose
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good samples with good positive and negative examples in each iteration for retraining or fine-

tuning the EMF model. A naive sampling approach is to random sample pairs of subexpressions

from the workload. However, this simple approach is like shooting in the dark and is unlikely to

provide sufficient positive examples for the model to learn, since positive examples (equivalent

subexpressions) are generally rare events compared to negative examples in a typical workload.

The key is to make sure we find some good positive examples for training.

As described in §2.2.1, by leveraging SF and VMF , we can quickly identify a set of likely equiva-

lent subexpression pairs from a large search space, then label the pairs by actually running the

equivalence verifier. We keep all the positive and negative examples. Moreover, if more negative

examples are needed for a balanced sample, we can also get random sample pairs of subexpressions

from the workload. As we show in §7, this filter-balanced sampling mechanism can significantly

improve the model quality with fewer labeled sample data compared to random sampling.

We formalize the SSFL algorithm in Algorithm 1. It accepts a workload𝑊 and examines each

pair in the cross product (line 4). For each pair, it applies the Sigmoid function to the EMF output to

compute the probability 𝜌 that the pair (𝑞𝑖 , 𝑞 𝑗 ) exhibits an equivalence relationship (line 5-7). Note

that probability estimates are trivial to compute when applying the EMF during prediction. Next, it

computes a confidence level (line 8) and, if the model is insufficiently confident, generates a sample

of likely-equivalent pairs by applying the SF and VMF (line 9). It then produces a complimentary

sample of size |𝑆+ | sampled randomly from non-equivalent pairs to form 𝑆−(line 10). It finally

retrains or fine-tunes the EMF using the full sample (line 11).

7 EXPERIMENTAL EVALUATION
We now present an experimental evaluation of GEqO. The goals of our evaluation are as follows:

to (i) compare various EMF models to determine their effectiveness in predicting equivalence

relationships, as well as assessing their ability to transfer learning across different workloads

and databases (§7.1); (ii) study the performance of the VMF filter in terms of its ability to filter

out “easy”equivalence cases (§7.2); (iii) evaluate the SSFL pipeline with the filter-based sampling

mechanism (§7.3); (iv) examine runtimes of VMF and EMF filters on CPU- and GPU-based im-

plementations (§7.4); and (v) evaluate the impact of GEqO on scaling state-of-the-art equivalence

solvers for a large workload (§7.5).

Implementation. We implement GEqO using Python 3.10.0 and Java 18.0.2. We manipulate

subexpressions, parse and generate abstract syntax trees, and perform instance-based featurization

using Calcite 1.27.0. The EMF is implemented using PyTorch 1.12 [43] and employs the Adam

optimizer [33] with a learning rate of 10
−3

and a weight decay of 5
−4
. We train using a dropout

of 50% applied to all layers. The VMF is implemented using FAISS 1.7.2, where we construct a

quantizer using 128-bit locality-sensitive hashes (LSH), an 128-dimension inverted index, and limit

neighbor searches to a radius of 𝑑 = 1. Finally, we set the SSFL confidence level to 𝑇ℎ = 0.9.

Experimental Setup. We conducted our experiments using a single machine with two CPU

sockets (Intel Xeon Platinum 8272CL) each with 16 physical cores (32 with hyper-threading), 264GB

of main memory, and 512GB storage device. Our GPU-based experiments are executed on a single

Nvidia Tesla T4 with 16GB memory.

Workloads.We generate a set of base subexpressions on the TPC-DS and TPC-H schema using

AMOEBA augmented with rules from WeTune (§5) as our workload queries. The set of TPC-DS

subexpressions comprises ∼34k queries, while the TPC-H dataset contains ∼19k queries. Section 5

describes how we obtained our balanced, labeled data to train our initial model.
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Fig. 8. Confusion matrices of three candidate EMF models (trained on TPC-H and tested on TPC-DS).

7.1 EMF performance
We first evaluate the performance of EMF model in terms of model architecture, computational

cost, and ability to transfer to unseen workloads and database schema.

7.1.1 Model type. This experiment compares the effectiveness of three candidate EMF classifiers:

multi-layer perceptrons (MLP), random forests (RF), and logistic regression (LR). We train the

three variants on the TPC-H workload and measure performance on the TPC-DS dataset. Table 3

summarizes the results. The MLP model provides superior accuracy versus the simpler models.

Figure 8 shows confusion matrices for each model type, drilling down into how the prediction

aligns with the ground truth for each model. Since the EMF serves as a filter, it should be the one

that strives to simultaneously minimize the false positives (i.e., 𝛼 error in the top right quadrant)

and false negatives (i.e., 𝛽 error in the bottom left quadrant) of the prediction. Here 𝛽 error is most

important—since GEqO always invokes the equivalence verifier to verify the predicated equivalence,

false positives from the EMF model do not affect the correctness of GEqO, but represent wasted

computation (i.e., by invoking the expensive automated verifier). By contrast, false negatives

represent the missed equivalent queries by the EMF model and thus should be minimized at all

costs. Clearly shown in Figure 8, MLP is by far the clear winner in simultaneously minimizing the

false positives and false negatives. In particular, the false negatives for MLP is kept around 0.1%,

which is orders of magnitude smaller than the other two models. Due to the superiority of the MLP

architecture to detect equivalence, all subsequent experiments in this section utilize this model.

7.1.2 Computational Cost. We next analyze the training, prediction, and space costs of the EMF
trained using the architecture described in §5 averaged over five runs. We train the EMF using ∼47k
subexpression pairs drawn from the TPC-H dataset. On average, a training run with 20 epochs takes

approximately 40 minutes. The size of the model when serialized to disk is approximately 2.3MB,

including all the learned parameters. EMF prediction time is 0.00319s per pair of subexpressions

averaged over ∼70k random TPC-DS subexpression pairs.

7.1.3 Transfer Learning. We now discuss the ability of the EMF to transfer to unseen datasets.

First, note that the results shown in Table 3 and Figure 8 already illustrate this ability, where the

EMF is trained on the TPC-H workload and tested on TPC-DS workload.

Next, we generate five additional datasets ranging from approximately 1k to 50k on a random

schema using the method described in §5. We then evaluate the EMF using the TPC-H-trained

model and report model performance in Table 4. The high performance on additional unseen

datasets reinforces EMF ’s ability to easily adapt to new, unseen workloads.
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Table 3. Classifier performance (train TPC-H, test TPC-DS).

Model Type Accuracy F1

𝑀𝐿𝑃 0.970 0.964
𝑅𝐹 0.592 0.030

𝐿𝑅 0.588 0.486

Table 4. Transfer learning performance on randomly-generated schema.

Dataset Size Precision Recall F1

1.2k 0.94 0.99 0.97

5.0k 0.93 0.98 0.97

11.0k 0.90 0.96 0.94

19.9k 0.93 0.97 0.95

44.9k 0.88 0.96 0.94

Table 5. VMF performance (train TPC-H, test TPC-DS).

Accuracy Precision Recall F1

0.74 0.42 0.98 0.60
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Fig. 9. SSFL accuracy and F1 for filter-based and random samples. Each sampling method was used to
iteratively select and train over successive batches of 512 samples.

7.2 VMF performance
In Table 5, we study the performance of the VMF filter, which filters out “easy” equivalence cases

before GEqO applies the EMF . As in §7.1, we evaluate the VMF by applying it to the TPC-DS

workload. We observe that the VMF is able to substantially reduce the search space and serves as

an excellent filter prior to invoking the EMF .
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7.3 SSFL performance
In this experiment, we evaluate the semi-supervised feedback loop (SSFL) in GEqO. To do so,

we iteratively train on additional labeled samples to fine-tune the EMF model. We compare our

filter-based sampling method (§6) against random sampling.

For this experiment, we start with a scenario where the workload changes with new equivalent

and non-equivalent patterns that the model has never seen before. We expect an initial model

with low quality that improves with subsequent SSFL iterations. To model this, we first create a

degenerate TPC-H dataset by omitting all queries that contain joins. We then train an initial model

on the degenerate dataset and test on the TPC-DS workload.

Figure 9 shows the accuracy and F1 score of the variants as they are exposed to additional

labeled samples. Since the initial model has only been exposed to limited forms of equivalent and

non-equivalent patterns, it does not perform well on the new workload which contains lots of

subexpressions with joins. In each iteration of the feedback loop, we draw 512 labeled samples,

using either filter-based or random sampling, from the new workload to help improve the model.

With random sampling, performance does not improve meaningfully. Due to the non-equivalence

of most subexpressions in the workload, identifying positive examples through random sampling

is nearly impossible. As a result, the accuracy and F1 score remain extremely low.

By contrast, the filter-based sampling is more intelligent in selecting balanced samples that

contain both positive and negative examples. This leads to significant improvements in both

accuracy and F1 score. It takes only ∼4k samples to improve model accuracy and F1 score to 90%.

We next measure SSFL execution time at various batch sizes. Figure 10 shows the result. Each bar

in the figure shows the end-to-end SSFL runtime, including both the time for sampling and training.

Obviously, the filter-based sampling is more expensive than random sampling since it needs to
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Fig. 12. Total runtimes of the VMF and EMF filters on varying number of subexpression pairs (log-log scale).

do extra work to identify likely equivalent subexpression pairs (e.g., by executing the SF and VMF
filters and verifying). As we see in the figure, as more samples are trained over, the difference

between the two reduces from 6.9× to less than 2×. At the same time, it’s worth recalling that

the filter-based sampling requires many fewer iterations to achieve a satisfactory model accuracy

and F1 score. Additionally, the SSFL process may be performed out-of-band with model prediction

and the improved model may be substituted after training, mitigating performance impact on the

prediction path. Once a model has stabilized, the SSFL will no longer be active, and no further

overhead will be incurred.

Finally, Figure 11 shows the breakdown of the time for the feedback loop with filter-based

sampling. As can be seen, the time spent in featurization, sampling, and verification is modest and

does not substantially increase with batch size. On the other hand, the increase in training time is

more dramatic and it quickly dominates SSFL runtime.

7.4 VMF & EMF compute performance
In the previous sections we evaluated the performance of the VMF and EMF in terms of their ability

to identify equivalences and eliminate non-equivalences. In this section, we further examine the

runtimes of each filter. To do so, we execute each filter on increasingly large subsets of the TPC-DS

dataset. We reduce confounds by disabling all other filters and compare performance using a CPU-

and GPU-based implementation.

In Figure 12(a), we observe that the CPU-based VMF exhibits excellent performance for smaller

numbers of subexpression pairs, whereas the GPU-based variant surpasses it for ≥∼1 million pairs

due to a decrease in the proportion of data transfer I/O overheads in the overall runtime. In contrast,

in Figure 12(b), the EMF consistently shows superior performance with GPU-based execution,

although the CPU variant performs well at lower numbers of pairs. These results highlight the

flexibility of GEqO in targeting and adapting to heterogeneous hardware, providing a distinct

advantage over other heuristic- and optimizer-based techniques

7.5 End-to-End GEqO performance
We now evaluate GEqO performance in detecting equivalent subexpression pairs in various work-

loads. To do so, we randomly create a series of forty ∼50𝑘 pair datasets generated on the TPC-DS

schema and unseen by the GEqO model. We verify that each dataset contains approximately 8, 16,

32, 64, or 128 equivalent pairs. We ensure that we have at least five (or more) datasets at each equiv-

alence count.
3
We then execute GEqO on each dataset by executing𝐺𝐸𝑞𝑂

set
(𝑊, {𝑆𝐹,𝑉𝑀𝐹, 𝐸𝑀𝐹 })

defined in §2.2 along with the baselines described below. For this experiment, we assume that the
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Fig. 13. End-to-end GEqO performance vs. the Calcite query optimizer, signature-based detection, and SPES.

equivalences admitted by the AV constitute ground truth and GEqO has executed its SSFL and

reached a confidence level above its minimum threshold (𝑇ℎ ≥ 0.9).

We compare GEqO against three baselines: (i) the SPES query equivalence solver [54]; (ii)

signature-based equivalence detection based on [32], which compares signatures computed on

each subexpression’s abstract syntax tree (AST); and (iii) an optimizer-based equivalence detection

technique that leverages the Calcite optimizer to check whether two subexpressions are equivalent.

As shown in Figure 13(a), we observe that GEqO identifies nearly all the semantic equiva-

lences in the dataset (with a true positive rate averaging 88% across all datasets and equivalence

rates), whereas the Calcite and signature-based techniques average far fewer. Unsurprisingly, SPES

correctly verifies all equivalences.

Next, Figure 13(b) shows the runtimes for each method. SPES’s runtime is more than 200× more

expensive than the other methods. Figure 13(c) omits SPES and illustrates that the Calcite and

signature-based methods have approximately constant runtimes across all datasets, whereas GEqO

exhibits a curve that is similar at low numbers of equivalences and gradually rises for datasets

with more equivalences. These plots demonstrate that GEqO is able to detect equivalences at an

accuracy level near that of SPES but at a runtime similar to the heuristic-based techniques.

Finally, we observe that while Figure 13(c) suggests a gradually rising runtime for GEqO, this

occurs because it detects more equivalences. Figure 13(d) plots the runtime per equivalence detected

and demonstrates that GEqO spends approximately the same amount of time as Calcite and the

signature-based method per equivalence. For scaling reasons, we do not show SPES values in this

plot, which ranged from 13.8 to 118.2 seconds per identified equivalence.

3
A small number of datasets had additional (up to 6.25%) equivalences as a byproduct of the randomized selection process.
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7.6 GEqO Filters Ablation Study
Next we explore the relative contribution of each GEqO filter. We execute𝐺𝐸𝑞𝑂

set
(𝑊, 𝐹 ) (see §2.2),

by varying 𝐹 to be some combination of the filters available in GEqO (i.e., the nonempty power set

of {VMF, EMF, SF}) and𝑊 to be each of the 32-equivalence datasets described in §7.5. We report

mean runtime over evaluated workloads, including verification time of the filtered pairs.

Figure 14 shows the result of this experiment. We observe that GEqO achieves best performance

only when applying all filters; no other combination minimizes the total runtime. This implies

that GEqO’s filters are complimentary to each other, and not redundantly filtering the same sets of

subexpression pairs.

7.7 A Case Study on Result Caching
In our final experiment, we evaluate how GEqO can be utilized in a result caching or materialization

application, where results of queries are cached under a storage budget, to save computation for

future semantically-equivalent queries. Using the workload from §7 on the 100GB TPC-DS dataset,

we obtain approximately ∼23k unique expressions after excluding those that produce empty results.

Our experiment assumes no updates.

When executing with unlimited storage budget, the result cache using GEqO could materialize the

first occurrence of each equivalent expression (there are 5,277 equivalence classes in the workload),

resulting in a total of ∼2GB storage space (in this workload, the expressions are computationally

expensive but return small results), which we use as the upper-bound for our storage budget. We

then vary the storage budget for the cache, and simulate a caching policy that materializes the most

expensive queries (leveraging past runtime statistics). Figure 15 shows a reduction of up to 61.5%

in the total workload execution time (running on a modern commercial database system), with 10%

of storage budget. With 100% storage budget, a total of 96.2% computation reduction is achieved.
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8 RELATEDWORK
Materialized Views and Query Rewriting. As one of the most widely used approaches for

computation reuse, materialized views are supported in many analytics engines. However, most

systems—even including some modern cloud-based analytics engines like Snowflake [12], Big-

Query [20], and NAPA [2]—still require manual identification of common computation and cre-

ation of views. To automate view materialization, many view selection algorithms have been

proposed [3, 5, 32, 51] to choose views that maximize computation reuse for a workload.

Efficient and effective detection of overlapping computation is crucial in optimally selecting

views to materialize. Some classical view selection methods heavily depend on the query optimizer

to identify equivalences. They consider factors such as resource constraints when selecting which

views to materialize. CloudViews [30] employs Merkle tree-like signatures to quickly detect equiv-

alent subexpressions. The ML-based view selection algorithm in [51] utilizes a SQL equivalence

verifier, called EQUITAS [53], to detect equivalent subexpressions (we discuss verifiers in detail

below). In terms of efficiency and scalability, the signature-based approach is clearly the best;

however, it is the least effective since it only admits syntactic equivalence. By contrast, equivalence

verifiers are superior in detecting semantic equivalence, but are computationally expensive. The

optimizer’s ability to detect semantic equivalence is bound by its rewrite rules. Interestingly, the

work in [50] found that even a mature optimizer like the one in SQL Server could still miss some

rewrite rules. In addition, repeatedly invoking the optimizer to check equivalence at cloud scale

could easily turn the optimizer into a bottleneck. Compared to all these existing approaches, GEqO

is designed to be efficient and scalable, achieving effectiveness close to that of a verifier.

To utilize materialized views, view matching algorithms (e.g., [18]) match a query against

previously-materialized views to determine whether the query can be rewritten into an improved

variant by leveraging the views at runtime. In fact, query rewrite is generally an important query

optimization step applied in many settings inside or outside the optimizer [21, 22]. Most optimizers

continue to rely on rewrite rules to identify equivalence and transform the original query into a

semantically equivalent alternative. GEqO can be used to learn equivalence relationships present

in the given workload and complement these existing rewrite rules.

Query Equivalence Verification. Verification of SQL query equivalence has been a long-standing
topic of research in database theory [1]. Several practical verifiers have been proposed [9, 10,

47, 53, 54]. Cosette [10] and its extended version UDP [9] transform SQL queries into algebraic

expressions and then utilize the Coq proof assistant [44] to compare the two resultant algebraic

expressions. However, these two approaches are computationally expensive due to the large number

of normalized algebraic representations. Recently, EQUITAS [53] and its extension SPES [54]

address this limitation by efficiently deriving symbolic representation of SQL queries and use

satisfiability modulo theories (SMT) to determine their equivalence under set and bag semantics.

Approaches such as Peggy [47] leverage equality saturation, where the optimizer enumerates

equivalent expressions for a given input expression based on predefined rules and collects them

in a compact graph representation. While saturating every subexpression in a workload is not

scalable, this technique could be leveraged by GEqO as an alternative equivalence verifier.

Since GEqO is a general framework, it can plug in any of the above equivalence verifiers, or even

new customized ones, to verify the predication from the EMF filter.

9 CONCLUSION AND FUTUREWORK
In this paper, we presented GEqO, a portable lightweight ML-based framework for efficiently

identifying semantically equivalent subexpressions at scale. We introduced VMF and EMF filters

to fill in the gap between a simple but very coarse schema-based filter and the accurate but very
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expensive equivalence verifier. We trained a deep-learning-based model to efficiently predict

equivalence relationship between a pair of subexpressions. The db-agnostic featurization allows

the learning from one workload and database to be transferrable to another. We also introduced

an end-to-end semi-supervised learning feedback loop with clever sampling to circumvent the

expensive data labeling process. Our experimental evaluation demonstrates that GEqO is up to

200× faster than verifiers on TPC-DS subexpressions.

9.1 Extension to Complex Subexpressions
Even though a query workload might contain non-SPJ queries, GEqO can still detect the equivalence

of the SPJ subexpressions in the workload. Therefore, it represents a significant step forward in

building an end-to-end framework for efficiently identifying semantically equivalent computations

at scale. Nevertheless, We plan to extend GEqO to support complex subexpressions beyond SPJ

(e.g., unions, aggregation, and complex predicates), using a similar approach to [25]. We next briefly

sketch potential encoding extensions.

OR and IN operators.We convert the WHERE clause with the OR operator to DNF, considering

each conjunctive as a separate query and introduce unions. Each conjunctive branch is encoded as

described in Section 3. However, this approach encounters scalability issues due to the exponential

growth in the number of clauses and the redundant encoding across union branches. The 𝐼𝑁 clause

can be considered as a shorthand representation for multiple 𝑂𝑅 conditions. Unnesting the clause

and introducing 𝑂𝑅 conditions still pose scalability issues, which we intend to investigate.

Union and except operators. We add a one-hot vector indicating union or except operators.

Group By and aggregation operators. We add a new group-by segment that contains a one-

hot vector for each of the group-by columns and an aggregate segment [AGG,COL], which is a

concatenation of AGG and COL one-hot vectors of supported aggregation functions and columns.

In addition to addressing encoding scalability issues with certain operators, we plan to assess

the effectiveness of the current EMF model on complex queries and determine if any enhancement

to the current architecture (e.g., augmenting the number of convolution layers) is necessary.

9.2 Extension toQuery Containment
A second important future direction involves using GEqO to scalably detect semantic containment,

which is crucial for some view selection algorithms [4, 8].

We think the GEqO framework should be applicable to semantic containment. The EMF model can

be directly extended to classify containment. We conduct a preliminary experiment to demonstrate

this by training a new containment model over TPC-H subexpressions with one-way joins and

up to three predicates. This model achieved ∼98% accuracy on a test TPC-DS workload of similar

complexity. As we increased the complexity of the workload (e.g., with additional joins), the

accuracy dropped to ∼78%. We believe these results are promising since detecting containment is

strictly harder than equivalence.

In the prediction pipeline, the SF filter is adaptable to support containment. For instance, for a

given pair, the table set of one of the subexpressions should be a subset of the other subexpression’s

table set, same condition applies on the projected columns. However, the distance metric used in

the VMF filter is not as easily adpatable, and we leave this as future work. In terms of automated

verification of semantic containment, this problem is well-studied under set semantics [1], but far

less understood under bag semantics (e.g., the class of unions of conjunctive queries is undecidable

under bag semantics [28, 29]). We direct readers to the survey [24], which describes several practical

containment checking algorithms in the context of rewriting queries using views, among which the

algorithm in [18] is a popular one that has been adopted by SQL Server and Calcite [6] optimizers.
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