Scalable and Numerically Stable Descriptive
Statistics 1n SystemML

Yuanyuan Tian

Shirish Tatikonda

Berthold Reinwald

IBM Almaden Research Center, USA
{ytian, statiko, reinwald}@us.ibm.com

Abstract—With the exponential growth in the amount of data
that is being generated in recent years, there is a pressing need
for applying machine learning algorithms to large data sets.
SystemML is a framework that employs a declarative approach
for large scale data analytics. In SystemML, machine learning
algorithms are expressed as scripts in a high-level language,
called DML, which is syntactically similar to R. DML scripts
are compiled, optimized, and executed in the SystemML runtime
that is built on top of MapReduce.

As the basis of virtually every quantitative analysis, descriptive
statistics provide powerful tools to explore data in SystemML. In
this paper, we describe our experience in implementing descrip-
tive statistics in SystemML. In particular, we elaborate on how
to overcome the two major challenges: (1) achieving numerical
stability while operating on large data sets in a distributed setting
of MapReduce; and (2) designing scalable algorithms to compute
order statistics in MapReduce. By empirically comparing to
algorithms commonly used in existing tools and systems, we
demonstrate the numerical accuracy achieved by SystemML.
We also highlight the valuable lessons we have learned in this
exercise.

I. INTRODUCTION

The growing need to analyze massive data sets has led
to an increased interest in implementing machine learning
algorithms on MapReduce [9], [11]. SystemML [10] is an
Apache Hadoop based system for large scale machine learning,
developed at IBM Research. In SystemML, machine learning
algorithms are expressed as scripts written in a high-level
language, called DML, with linear algebra and mathematical
primitives. SystemML compiles these scripts, applies various
optimizations based on data and system characteristics, and
translates them into efficient runtime on MapReduce. A wide
variety of machine learning techniques can be expressed
in SystemML, including classification, clustering, regression,
matrix factorization, and ranking.

Besides complex machine learning algorithms, SystemML
also provides powerful constructs to compute descriptive
statistics. Descriptive statistics primarily include univariate
analysis that deals with a single variable at a time, and
bivariate analysis that examines the degree of association
between two variables. Table I lists the descriptive statistics
that are currently supported in SystemML. In this paper, we
describe our experience in addressing the two major challenges
when implementing descriptive statistics in SystemML — (1)
numerical stability while operating on large data sets in the
distributed setting of MapReduce; (2) efficient implementation
of order statistics in MapReduce.

TABLE I
DESCRIPTIVE STATISTICS SUPPORTED IN SYSTEMML

Scale variable: Sum, Mean, Harmonic mean, Geometric
mean, Min, Max, Range, Median, Quantiles, Inter-quartile
mean, Variance, Standard deviation, Coefficient of varia-

Univariate | tion, Central moment, Skewness, Kurtosis, Standard error
of mean, Standard error of skewness, Standard error of
kurtosis
Categorical variable: Mode, Per-category frequencies
Scale-Scale variables: Covariance, Pearson correlation

Bivariate

Scale-Categorical variables: Eta, ANOVA F measure

Categorical-Categorical variables: Chi-squared coeffi-
cient, Cramer’s V, Spearman correlation

Most of descriptive statistics, except for order statistics,
can be expressed in certain summation form, and hence it
may seem as if they are trivial to implement on MapReduce.
However, straightforward implementations often lead to dis-
asters in numerical accuracy, due to overflow, underflow and
round-off errors associated with finite precision arithmetic.
Such errors often get magnified with the increasing volumes
of data that is being processed. However in practice, the issue
of numerical stability is largely ignored, especially in the
context of large scale data processing. Several well-known
and commonly used software products still use numerically
unstable implementations to compute several basic statistics.
For example, McCullough and Heiser highlighted in a series of
articles that Microsoft Excel suffers from numerical inaccura-
cies for various statistical procedures [15], [16], [17], [18]. In
their studies, they conducted various tests related to univariate
statistics, regression, and Monte Carlo simulations using the
NIST Statistical Reference Datasets (StRD) [3]. They note
that numerical improvements were made to univariate statistics
only in the recent versions of Excel [15]. In the context of
large-scale data processing, Hadoop-based systems such as
PIG [19] and HIVE [20] still use numerically unstable im-
plementations to compute several statistics. PIG as of version
0.9.1 supports only the very basic sum and mean functions, and
neither of them use numerically stable algorithms. The recent
version of HIVE (0.7.1) supports more statistics including sum,
mean, variance, standard deviation, covariance, and Pearson
correlation. While variance, standard deviation, covariance,
and Pearson correlation are computed using stable methods,
both sum and mean are computed using numerically unstable
methods. These examples highlight the fact that the issue of
numeric stability has largely been ignored in practice, in spite
of its utmost importance.

In this paper, we share our experience in achieving numer-
ical stability as well as scalability for descriptive statistics on
MapReduce, and bring the community’s attention to the impor-
tant issue of numerical stability for large scale data processing.
Through a detailed set of experiments, we demonstrate the
scalability and numerical accuracy achieved by SystemML.
We finally conclude by highlighting the lessons we have
learned in this exercise.

II. NUMERICAL STABILITY

Numerical stability refers to the inaccuracies in computation
resulting from finite precision floating point arithmetic on dig-
ital computers with round-off and truncation errors. Multiple
algebraically equivalent formulations of the same numerical
calculation often produce very different results. While some
methods magnify these errors, others are more robust or stable.
The exact nature and the magnitude of these errors depend
on several different factors like the number of bits used to
represent floating point numbers in the underlying architecture
(commonly known as precision), the type of computation
that is being performed, and also on the number of times a
particular operation is performed. Such round-off and trun-
cation errors typically grow with the input data size. Given
the exponential growth in the amount of data that is being
collected and processed in recent years, numerical stability
becomes an important issue for many practical applications.

One possible strategy to alleviate these errors is to use spe-
cial software packages that can represent floating point values
with arbitrary precision. For example, BigDecimal in Java
provides the capability to represent and operate on arbitrary-
precision signed decimal numbers. Each BigDecimal number
is a Java object. While the operations like addition and
subtraction on native data types (double, int) are performed
on hardware, the operations on BigDecimal are implemented
in software. Furthermore, JVM has to explicitly manage the
memory occupied by BigDecimal objects. Therefore, these
software packages often suffer from significant performance
overhead. In our benchmark studies, we observed up to 2
orders of magnitude slowdown for addition, subtraction, and
multiplication using BigDecimal with precision 1000 com-
pared to the native double data type; and up to 5 orders of
magnitude slowdown for division.

In the rest of this section, we discuss methods adopted in
SystemML to calculate descriptive statistics, which are both
numerically stable and computationally efficient. We will also
highlight the common pitfalls that must be avoided in practice.
First, we discuss the fundamental operations summation and
mean, and subsequently present the methods that we use for
computing higher-order statistics and covariance.

A. Stable Summation

Summation is a fundamental operation in many statistical
functions, such as mean, variance, and norms. The simplest
method is to perform naive recursive summation, which ini-
tializes sum = 0 and incrementally updates sum. It however
suffers from numerical inaccuracies even on a single computer.

For instance, with 2-digit precision, naive summation of num-
bers 1.0,0.04,0.04,0.04,0.04, 0.04 results in 1.0, whereas the
exact answer is 1.2. This is because once the first element
1.0 is added to sum, adding 0.04 will have no effect on
sum due to round-off error. A simple alternative strategy is
to first sort the data in increasing order, and subsequently
perform the naive recursive summation. While it produces the
accurate result for the above example, it is only applicable
for non-negative numbers, and more importantly, it requires
an expensive sort.

There exists a number of other methods for stable summa-
tion [12]. One notable technique is proposed by Kahan [13].
It is a compensated summation technique — see Algorithm 1.
This method maintains a correction or compensation term to
accumulate errors encountered in naive recursive summation.

Algorithm 1 Kahan Summation Incremental Update

/l s1 and so are partial sums, ¢; and c are correction terms
KAHANINCREMENT(S1, 1, S2, ¢2){

corrected_sa = s2 + (c1 + ¢2)

sum = s1 + corrected_so

correction = corrected_sa — (sum — s1)

return (sum, correction) }

Kahan and Knuth independently proved that Algorithm 1
has the following relative error bound [12]:
[Bal _ 150 = 50l
|5 |Sh|

< (2u+ O(nu?))kx, (1)

n
where S,, = > x; denotes the true sum of a set of n numbers
i=1
X = {x1,22,...,2,}, and S, is the sum produced by the
summation algorithm, v = % B~ is the unit roundoff for a
floating point system with base [and precision ¢. It denotes
the upper bound on the relative error due to rounding. For
IEEE 754 floating point standard with 3 = 2 and ¢ = 53,
u = 27%3 a~ 107'6, Finally, kx is known as the condition
number for the summation problem, and it is defined as the

3 Jail
fraction ==
ity of the problem to approximation errors, independent of the
exact algorithm used. Higher the value of kx, the higher will
be the numerical inaccuracies and the relative error. It can be
shown that for a random set of numbers with a nonzero mean,
the condition number of summation asymptotically approaches
to a finite constant as n — co. Evidently, the condition number
is equal to 1 when all the input values are non-negative. It can
be seen from Equation 1 that when nu < 1, the bound on the
relative error is independent of input size n. In the context
of IEEE 754 standard, it means that when n is in the order
of 10'¢ the relative error can be bounded independent of the
problem size. In comparison, the naive recursive summation

< (n — Durx + -2 112,
[>

. The condition number measures the sensitiv-

has a relative error bound ||]§"||
2
i=1
which clearly is a much larger upper bound when compared
to Equation 1.

One can easily extend the Kahan algorithm to the MapRe-
duce setting. The resulting algorithm is a MapReduce job in
which each mapper applies KAHANINCREMENT and generates
a partial sum with correction, and a single reducer produces
the final sum.

Through error analysis, we can derive the relative er-
ror bound for this MapReduce Kahan summation algorithm:
B < [u+4u+0(mu?) +O(2u?)+0(mu?) + O(£ u®) +
O(nu*)]kx (see Appendix for proof). Here, m is the number
of mappers (m is at most in 1000s). As long as ~u < 1 (and
m < n), the relative error is independent of the number of
input data items. In the context of IEEE 754 standard, it can be
shown that when 2 is in the order of 2°3 &~ 10', the relative
error can be bounded independent of n. In other words, as long
as the number of elements processed by each mapper is in the
order of 1016, the overall summation is robust with respect to
the total number of data items to be summed. Therefore, by
partitioning the work across multiple mappers, the MapReduce
summation method is able to scale to larger data sets while
keeping the upper bound on relative error independent of the
input data size n.

B. Stable Mean

Mean is a fundamental operation for any quantitative data
analysis. The widely used technique is to divde the sum by the
total number of input elements. This straightforward method
of computing mean however suffers from numerical instability.
As the number of data points increases, the accuracy of sum
decreases, thereby affecting the quality of mean. Even when
the stable summation is used, sum divided by count technique
often results in less accurate results.

In SystemML, we employ an incremental approach to
compute the mean. This method maintains a running mean
of the elements processed so far. It makes use of the update
rule in Equation 2. In a MapReduce setting, all mappers apply
this update rule to compute the partial values for count and
mean. These partial values are then aggregated in the single
reducer to produce the final value of mean.

5
n=na+n, 6=~ fla; L= Ha Sy)

In Equation 2, n, and n; denote the partial counts, p, and
wy refer to partial means. The combined mean is denoted
by u, and it is computed using the KAHANINCREMENT
function in Algorithm 1, denoted as @ in the equation. In
other words, we keep a correction term for the running mean,
and p = uaeenb— is calculated via (u.value, p. correctzon)
KAHANINCREMENT (fiq.value, piq.correction, nb ,0). Note
that the use of KAHANINCREMENT is 1mp0rtant to obtain
stable value for ;. When the value of nb% is much smaller than
ta, the resulting p will incur a loss in accuracy — which can be
alleviated by using KAHANINCREMENT. As we show later in
Section IV, this incremental algorithm results in more accurate
results. We also use it in stable algorithms to compute higher
order statistics and covariance (see Sections II-C & II-D).

C. Stable Higher-Order Statistics

We now describe our stable algorithms to compute higher-
order statistics, such as variance, skewness and kurtosis. The
core computation is to calculate the p** central moment m,, =

n
L% (w;—z)?. Central moment can be used to describe higher-

i=1
order statistics. For instance, variance 02 = —5my, skewness

__ _ms n—1\1.5 : __ Mg n—1\2
g1 = 15 (=)', and Kurtosis go = i (=) = 3.

The standard two-pass algorithm produces relatively stable

results (for ms, the relative error bound is nu + n2u2/<;)2(,

pogs:

Z (zi—7)?
requires two scans of data — one scan to compute = and the
second to compute m,. A common technique (pitfall) is to
apply a simple textbook rewrite to get a one-pass algorlthm
For instance, mo can be rewritten as - E z? — n—lz(z z;)%

i=1
The sum of squares and sum can be computed in a single

pass. However, this algebraical rewrite is known to suffer from
serious stability issues resulting from cancellation errors when
performing subtraction of two large and nearly equal numbers
(relative error bound is nux2). This rewrite, as we show later
in Section IV-B, may actually produce a negative result for
ma, thereby resulting in grossly erroneous values for variance
and other higher-order statistics.

In SystemML, we use a stable MapReduce algorithm that is
based on an existing technique [5], to incrementally compute
central moments of arbitrary order. It makes use of an update
rule (Equation 3) that combines partial results obtained from
two disjoint subsets of data (denoted as subscripts a and b).
Here, n, p, M), refer to the cardinality, mean, and n x m,, of
a subset, respectively. Again, @ represents addition through
KAHANINCREMENT. When p = 2, the algorithm has a relative
error bound of nuxy. While there is no formal proof to bound
the relative error when p > 2, we empirically observed that
this method produces reasonably stable results for skewness
and kurtosis. In the MapReduce setting, the same update rule
is used in each mapper to maintain running values for these
variables, and to combine partial results in the reducer. Note
that the update rule in [5] uses basic addition instead of the
more stable KAHANINCREMENT. In Section IV-D, we will
evaluate the effect of KAHANINCREMENT on the accuracy of
higher-order statistics.

where kx = (=)2 is the condition number), but it

1)
n=ng +ny, 0= — fla, = pa ® T
N
My, =Mp,a ® M, ,beB{Z() Fb)]MP*j,a 3)
Jj=1
Na i NaMNp 1 —1.,_1
+ P My gald” + (F220 [y = (277

D. Stable Covariance

) 2 (@i=2)(yi=y) o
Covariance (MT) is one of the basic bivariate
statistics. It measures the strength of correlation between two
data sets. A common textbook one-pass technique rewrites the

equation as —— E Tili — n(n 0 Z Z; Z ;. Similar to the

one-pass rewrite of variance described 1Zn Section II-C, this
rewrite also suffers from numerical errors and can produce
grossly inaccurate results.

In SystemML, we adapt the technique proposed by Bennett
et al. [5] to the MapReduce setting. This algorithm computes
the partial aggregates in the mappers and combines the partial
aggregates in a single reducer. The update rule for computing

C= Z(xz z)(y;

add1t1on through KAHANINCREMENT. The difference between
the update rule used in SystemML and the original update
rule in [5] is that SystemML uses KAHANINCREMENT for
the updates instead of the basic addition. In Section IV-D, we
will empirically compare these two methods.

—7) is shown below. Note that & represents

0
N =Nqg +Nb, Oz = fa,b — fz,a; Mo = Pa,a P -

Oy =py,p —
C :Ca ©® Cb ©®

1
Hy,ay Hy :Hy,a®nbgy 4

”“”ba 5y

III. ORDER STATISTICS

Order statistics are one of the fundamental tools in non-
parametric data analysis. They can be used to represent various
statistics, such as min, max, range, median, quantiles and inter-
quartile mean. Although order statistics do not suffer from
numerical stability problems, computing them efficiently in
MapReduce is a challenge.

Arbitrary order statistics from a set of » numbers can be
computed sequentially in O(n) time using the popular BFPRT
algorithm [6]. There exist several efforts such as [4] that
attempt to parallelize the sequential BFPRT algorithm. The
core idea is to determine the required order statistic ifera-
tively by dynamically redistributing the data in each iteration
among different cluster nodes to achieve load balancing. These
iterative algorithms are suited for MPI-style parallelization
but they are not readily applicable to MapReduce, as they
require multiple MapReduce jobs with multiple disk reads and
writes. Furthermore, message passing in MapReduce can only
be achieved through the heavy-weight shuffling mechanism.
In SystemML, we therefore devised a sort-based algorithm
by leveraging Hadoop’s inherent capability to sort large set
of numbers. This algorithm needs only one full MapReduce
job to sort the input data, plus one partial scan of the sorted
data to compute the required order statistics. Note that there
have also been studies on parallel approximate order statistics
algorithms [8], but in this paper, we focus only on algorithms
for exact order statistics.

Sort-Based Order Statistics Algorithm: This algorithm
consists of three phases. The first two phases are inspired by
Yahoo’s TeraSort algorithm [1].

Sample Phase: This phase samples N items from the input
data, which are then sorted and divided evenly into 7 partitions,

Tput: 0,1,4,3,1,6 ,7,9,3}

Y O Y

Mapperl

Range
Partiton

M apper2 M apper3

mnge [~3) BgEE -[6) ange §~ ©]

sortEach Reducerl Redt 2 Red 3
Partiton educer educer:

<3,2> 5,
<v, count> <, 1> <7,
<9,

1
-

totalcount tmaj_g 1>
. mel}.

Fig. 1. Sort-Based Order Statistics Algorithm

where 7 is the number of reducers. The boundary points are
used for range partitioning in the next phase.

Sort Phase: As shown in Figure 1, this phase is a MapRe-
duce job that reads the input data, and uses the results from
the previous phase to range partition the data. Each range is
assigned to a different reducer, which sorts the unique values
and keeps the number of occurrences for each unique value.
Each reducer also computes the total number of data items in
its range.

Selection Phase: For a given set of required order statistics,
the output of sort phase (r sorted HDFS files and number of
items in each file) is used to identify the appropriate file(s)
that need to be scanned. If multiple order statistics reside in a
single file, the scan cost can be shared. Furthermore, different
files are scanned concurrently for improved efficiency.

IV. EXPERIMENTS
A. Experimental Setup

Experiment Cluster: The experiments were conducted with
Hadoop 0.20 [2] on a cluster with 5 machines as worker nodes.
Each machine has 8 cores with hyperthreading enabled, 32
GB RAM and 2 TB storage. We set each machine to run 15
concurrent mappers and 10 concurrent reducers.

Experiment Data Sets: There exist several benchmark
data sets to assess the accuracy of numerical algorithms and
software, such as NIST StRD [3]. However, these benchmarks
mostly provide very small date sets. For example, the largest
data set in NIST StRD contains only 5000 data points. To test
the numerical stability of distributed algorithms, we generated
large synthetic data sets similar to those in NIST StRD. Our
data generator takes the data size and the value range as inputs,
and generates values from uniform distribution. For our exper-
iments, we created data sets with different sizes (10million to
1billion) whose values are in the following 3 ranges, R1:[1.0 —
1.5), R2:[1000.0 — 1000.5) and R3:[1000000.0 — 1000000.5).

Accuracy Measurement: In order to assess the numerical
accuracy of the results produced by any algorithm, we need
the true values of statistics. For this purpose, we rely on Java
BigDecimal that can represent arbitrary-precision signed
decimal numbers. We implemented the naive algorithms for
all statistics using Java BigDecimal with precision 1000.
With such a high precision, results of all mathematically
equivalent algorithms should approach closely to the true

value. We implemented naive recursive summation for sum,
sum divided by count for mean, one-pass algorithms for
higher-order statistics as shown in Table II, and textbook one-
pass algorithm for covariance. We consider obtained results as
the “true values” of these statistics.

We measure the accuracy achieved by different algorithms
using the Log Relative Error (LRE) metric described in [14].
If ¢ is the computed value from an algorithm and ¢ is the true
value, then LRE is defined as
q— t|
t
LRE measures the number of significant digits that match
between the computed value from the algorithm ¢ and the
true value t. Therefore, a higher value of LRE indicates that
the algorithm is numerically more stable.

LRE = —log,, |

TABLE 11
TEXTBOOK ONE-PASS ALGORITHMS FOR HIGHER-ORDER STATISTICS
Equations for 1-Pass Algorithm
; T T 2
variance 152 — mSl
I
std (variance)2
S3—3515,+-5 S
) n
skewness - n><std6>< varizancg -
. S4—=S3S1+-5S257—=%5S
kurtosis - nZZ221 7550 3
nXx(variance)

n
Sp=> xf , which can be easily computed in one pass.
i=1

B. Numerical Stability of Univariate Statistics

In this section, we demonstrate the numeric stability of
SystemML in computing a subset of univariate statistics.

Table III lists the accuracy (LRE values) of results produced
by different algorithms for sum and mean. For summa-
tion, we compare the MapReduce Kahan summation used
in SystemML against the naive recursive summation and
the sorted summation. The latter two algorithms are adapted
to the MapReduce environment. In case of naive recursive
summation, mappers compute the partial sums using recursive
summation, which are then aggregated in the reducer. In
case of sorted summation, we first sort the entire data on
MapReduce using the algorithm described in Section III, and
then apply the adapted naive recursive summation on the
sorted data. As shown in Table III, SystemML consistently
produces more accurate results than the other two methods.
The accuracies from naive recursive summation and the sorted
summation are comparable. In terms of runtime performance,
our MapReduce Kahan summation and the naive recursive
summation are similar, but the sorted summation is up to 5
times slower as it performs an explicit sort on the entire data.
Similarly, the accuracies obtained by SystemML for mean are
consistently better than naive “sum divided by count” method.

The accuracy comparison for higher-order statistics is
shown in Table IV. In SystemML, we employ the algorithms
presented in Section II-C to compute required central mo-
ments, which are then used to compute higher-order statistics.
We compare SystemML against the naive textbook one-pass

methods (see Table II). As shown in Table IV, SystemML
attains more accurate results for all statistics. The difference
between the two methods in case of higher-order statistics is
much more pronounced than that observed for sum and mean
from Table III. This is because the round-off and truncation
errors get magnified as the order increases. It is important to
note that for some data sets in ranges R2 and R3, the higher-
order statistics computed by the naive method are grossly
erroneous (0 digits matched). More importantly, in some cases,
the naive method produced negative values for variance, which
led to undefined values for standard deviation, skewness and
kurtosis (shown as NA in Table IV).

The value range has a considerable impact on the accuracy
of univariate statistics. Even though R1, R2, and R3 have
the same delta (i.e., the difference between minimum and
maximum value), the accuracies obtained by all the algorithms
drop as the magnitude of values increases. A popular technique
to address this problem is to shift all the values by a constant,
compute the statistics, and add the shifting effect back to the
result. The chosen constant is typically the minimum value
or the mean (computed or approximate). Chan et al. showed
that such a technique helps in computing statistics with higher
accuracy [7].

C. Numerical Stability of Bivariate Statistics

We now discuss the numerical accuracy achieved by Sys-
temML for bivariate statistics. We consider two types of
statistics: scale-categorical and scale-scale. In the former type,
we compute Eta' and ANOVA-F* measures, whereas in the
latter case, we compute covariance and Pearson correlation
(R)3. For scale variables, we use data sets in value ranges R1,
R2 and R3 that were described in Section IV-A. For categorical
variables, we generated data in which 50 different categories
are uniformly distributed.

For computing these statistics, SystemML relies on numer-
ically stable methods for sum, mean, variance and covariance
from Section II, whereas the naive method in comparison uses
the naive recursive summation for sum, sum divided by count
for mean, and textbook one-pass algorithms for variance and
covariance.

The LRE values obtained for scale-categorical statistics are
shown in Table V. From the table, it is evident that the
statistics computed in SystemML have higher accuracy than
the ones from the naive method. It can also be observed
that the accuracy achieved by both methods reduces as the

i 2
2 (ny-—1)o;. 1
Eta is defined as (1 — W)E, where R is the number of
categories, 1, is the number of data entries per category, o2 is the variance
per category, n is the total number of data entries, and o is the total variance.

s 2
2 2 nr(pr—n)
ANOVA-F is defined as _]%7'. 1
> (np—1)02
r=1
of categories, n, is the number of data entries per category, (i~ is the mean
per category, o2 is the variance per category, n is the total number of data
entries, and p is the total mean.
3pearson-R is defined as

are standard deviations.

-

n—R

where R is the number

Ty
ooy’

where o4 is the covariance, o and oy

TABLE III
NUMERICAL ACCURACY OF SUM AND MEAN (LRE VALUES)

Size Sum Mean
(million)
Range SystemML | Naive | Sorted | SystemML | Naive
10 16.1 13.5 16.1 16.7 13.5
R1 100 16.3 13.8 13.6 16.2 13.8
1000 16.8 13.6 135 16.5 13.6
10 16.8 144 13.9 16.5 14.4
R2 100 16.1 13.4 13.4 16.9 13.4
1000 16.6 13.1 13.9 16.4 13.1
10 15.9 14.0 13.9 16.3 14.0
R3 100 16.0 13.1 134 16.9 13.1
1000 16.3 12.9 12.2 16.5 12.9
TABLE IV

NUMERICAL ACCURACY OF HIGHER-ORDER STATISTICS (LRE VALUES)

Size Variance Std Skewness Kurtosis
(million)

Range SystemML | Naive | SystemML | Naive | SystemML | Naive | SystemML | Naive
10 16.0 11.3 15.9 11.6 16.4 7.5 15.3 9.8
R1 100 16.2 11.5 16.8 11.8 14.9 7.1 15.6 9.3
1000 16.0 11.3 16.4 11.6 14.5 6.5 15.6 8.9
10 15.4 5.9 15.9 6.2 12.5 0 14.9 0
R2 100 15.6 5.3 15.8 5.6 12.0 0 14.9 0
1000 16.2 4.9 16.4 5.2 12.1 0 15.2 0
10 14.4 0 14.7 0 9.1 0 12.6 0
R3 100 12.9 0 13.2 NA 9.0 NA 13.2 NA
1000 13.2 0 13.5 NA 9.4 NA 12.9 NA

NA represents undefined standard deviation, skewness or kurtosis due to a negative value for variance.

TABLE V
NUMERICAL ACCURACY OF BIVARIATE SCALE-CATEGORICAL
STATISTICS: ETA AND ANOVA-F (LRE VALUES)

TABLE VI
NUMERICAL ACCURACY OF BIVARIATE SCALE-SCALE STATISTICS:
COVARIANCE AND PEARSON-R (LRE VALUES)

magnitude of input values increases — e.g., LRE numbers for
R3 are smaller than those of R1. As we move from RI to
R3, the accuracy of the naive method drops more steeply
compared to SystemML. This is because the inaccuracies of
total and per-category mean and variance quickly propagate
and magnify the errors in Eta and ANOVA-F. Similar trends
can be observed in case of covariance and Pearson correlation,
as shown in Table VI. For the cases of R2 vs. R3 with 100
million and 1 billion data sets, the naive algorithm produces
negative values for variance (see Table IV), which resulted in
undefined values for Pearson-R (shown as NA in Table VI).

Size Eta ANOVA-F Size Covariance Pearson-R
(million) (million)
Range SystemML | Naive | SystemML | Naive Range SystemML | Naive | SystemML Naive
10 16.2 13.7 16.2 10.0 10 15.0 8.4 15.1 6.2
R1 100 16.6 13.7 15.6 10.0 R1 vs. R2 100 15.6 8.5 15.4 6.4
1000 16.5 13.6 15.8 9.9 1000 16.0 8.7 15.7 6.2
10 16.2 72 13.3 35 10 13.5 3.0 13.5 3.0
R2 100 16.6 7.4 13.4 3.7 R2 vs. R3 100 12.8 2.8 12.7 NA
1000 16.5 7.9 13.4 4.3 1000 13.6 3.9 13.8 NA
10 162 0 102 0 NA represents undefined Pearson-R due to a negative value for variance.
R3 100 15.9 1.9 10.0 0
1000 16.5 1.2 10.0 0

D. The Impact of KAHANINCREMENT

In this section, we evaluate the effect of using KAHANIN-
CREMENT in the update rules of central moments (Equation 3)
and covariance (Equation 4) on the accuracy of the results.

Table VII and Table VIII show the numerical accuracy
achieved by the update rules using KAHANINCREMENT and
basic addition for higher-order statistics and scale-scale bi-
variate statistics. Evidently, update rules using KAHANIN-
CREMENT are able to produce more accurate results for all
statistics across the board. In SystemML, the correction terms
maintained in Kahan technique helps in reducing the effect of
truncation errors.

E. Performance of Order Statistics

In this section, we evaluate the scalability of the sort-based
order statistics algorithm presented in Section III. Script 1

TABLE VII
THE EFFECT OF KAHANINCREMENT ON THE ACCURACY OF HIGHER-ORDER STATISTICS (LRE VALUES)

Size Variance Std Skewness Kurtosis
(million)
Range Kahan | Basic | Kahan | Basic | Kahan | Basic | Kahan | Basic
10 16.0 13.5 15.9 13.8 16.4 13.0 153 13.7
R1 100 16.2 13.7 16.8 14.0 14.9 12.5 15.6 12.8
1000 16.0 14.1 16.4 144 14.5 12.1 15.6 11.8
10 154 12.8 15.9 13.1 12.5 11.8 14.9 134
R2 100 15.6 12.5 15.8 12.8 12.0 9.7 14.9 14.3
1000 16.2 13.8 16.4 14.1 12.1 9.3 15.2 11.8
10 144 9.3 14.7 9.6 9.1 7.1 12.6 9.5
R3 100 12.9 9.5 13.2 9.8 9.0 6.8 132 9.7
1000 13.2 10.3 13.5 10.6 9.4 6.3 12.9 10.0
TABLE VIII

THE EFFECT OF KAHANINCREMENT ON THE ACCURACY OF COVARIANCE
AND PEARSON-R (LRE VALUES)

Size Covariance Pearson-R
(million)

Range Kahan | Basic | Kahan | Basic
10 15.0 14.2 15.1 13.0
R1 vs. R2 100 15.6 13.3 15.4 13.0
1000 16.0 14.6 15.7 14.2
10 13.5 10.0 13.5 9.8
R2 vs. R3 100 12.8 10.0 12.7 10.5
1000 13.6 11.4 13.8 10.5

shows how order statistics are expressed in DML language
— more details on the DML syntax can be found in [10]. The
script computes the median as well as other quantiles as speci-
fied by the vector P, from the input data V. In this experiment,
we fix P ={0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}, and vary
the size of V' (the value range of data in V is R1). Figure 2
shows the execution time of this script as the input data size
increases. For the given DML script, SystemML is able to
identify that multiple different order statistics are computed
on the same data set, and it accordingly performs a single sort
and then computes the required order statistics. Furthermore,
all the specified order statistics are selected simultaneously, in
parallel.

Scrlpt 1: A Simple Script of Order Statistics
input vector (column matrix)
V = read("in/V")
a vector specifying the desired quantiles
P = read("in/P")
compute median
median = quantile(V, 0.5);
print ("median: ", median) ;
compute quantiles
Q = quantile(Vv, P);
0: write(Q, "out/Q")

l—‘kO(IJ\IO’\U'Ipble\)l—‘

V. DISCUSSION

We now summarize the lessons learned while implementing
scalable and numerically stable descriptive statistics in
SystemML.

e Many existing sequential techniques for numerical sta-
bility can be adapted to the distributed environment.

250 4 .
o Order Statistics
200 4
150 -
100

50 -

Execution Time (sec)

0 -
0 100