
TALE: A Tool for Approximate Large Graph Matching

Yuanyuan Tian, Jignesh M. Patel

EECS Department, University of Michigan,

Ann Arbor, Michigan, USA

{ytian, jignesh}@eecs.umich.edu

Abstract

Large graph datasets are common in many emerging
database applications, and most notably in large-scale
scientific applications. To fully exploit the wealth of
information encoded in graphs, effective and efficient
graph matching tools are critical. Due to the noisy
and incomplete nature of real graph datasets, approx-
imate, rather than exact, graph matching is required.
Furthermore, many modern applications need to query
large graphs, each of which has hundreds to thousands
of nodes and edges.

This paper presents a novel technique for approxi-
mate matching of large graph queries. We propose a
novel indexing method that incorporates graph struc-
tural information in a hybrid index structure. This in-
dexing technique achieves high pruning power and the
index size scales linearly with the database size. In ad-
dition, we propose an innovative matching paradigm to
query large graphs. This technique distinguishes nodes
by their importance in the graph structure. The match-
ing algorithm first matches the important nodes of a
query and then progressively extends these matches.
Through experiments on several real datasets, this pa-
per demonstrates the effectiveness and efficiency of the
proposed method.

1 Introduction

Graphs provide a natural way to model data in
a wide variety of applications, such as social net-
works, road networks, network topology, protein inter-
action networks and protein structures. Many graph
databases are growing rapidly in size. The growth is
both in the number of graphs and the sizes of graphs
(the number of nodes and the number of edges). For
example, the number of interactions (edges in protein
interaction networks) in the BIND database [3] grew

about 10 folds from 2002 September to 2004 Septem-
ber, and almost doubled after that. The number of pro-
tein structures (graphs) in the ASTRAL database [8]
has increased more than 3 folds since 2002. There is
a critical need for efficient and effective graph query-
ing tools for querying and mining these growing graph
databases.

The database community has had a long-standing
interest in querying graph databases [6, 9, 17, 19–25].
These previous studies have mostly been carried out
within the context of precise graph data, and have fo-
cused on exact graph or subgraph matching queries.
However, many real graph datasets are noisy and in-
complete in nature. For example, it is well known
that protein interaction networks produced by high-
throughput methods contain many false positives [18].
Moreover, the discovered interactions only represent a
small fraction of the true network. As a result, ex-
act graph or subgraph matching often fails to produce
useful results.

In contrast, approximate graph or subgraph match-
ing plays a critical role in these applications. Approx-
imate matching allows node/edge insertions and dele-
tions, and node/edge mismatches. Furthermore, many
new graph applications prefer approximate matching
results rather than exact ones as they can provide more
information such as what might be missing or spurious
in a query or a database graph.

In addition, most existing graph matching methods
are applicable to databases that contain graphs with
small sizes, i.e. each graph has a small number (tens) of
nodes and edges. Moreover, the query graphs allowed
in these methods are also small in size. However, in
many new applications, both the query and database
graphs are “large”. Each graph can contain hundreds
to thousands of nodes and edges. For example, in life
sciences applications, protein interaction networks for
individual species are often matched to determine sim-
ilarities and differences across species. Each protein in-
teraction network is large, and typically contains hun-

1

dreds to thousands of nodes and edges in each graph.

The problem that we address in this paper is ap-
proximate subgraph matching of large query graphs.
Namely, given a large query graph, with hundreds to
thousands of nodes and edges, and a database of large
graphs, we want to find the subgraphs in the database
that are similar to the query.

In this paper we present an index-based method for
approximate subgraph matching, called TALE (a Tool
for Approximate Subgraph Matching of Large Queries
Efficiently). TALE employs a novel graph indexing
method, called NH-Index (Neighborhood Index). Most
existing graph indexing methods only index subgraphs
(paths, trees or general subgraphs), which can lead to
index sizes that are exponential in the database size.
The indexing unit of NH-Index is the neighborhood of
each database node. The neighborhood concept cap-
tures the local graph structure around each node, and
results in an index with a high pruning power. At the
same time, the number of indexing units is equal to
the number of nodes in the database, which allows the
index to grow linearly with the database size. Further-
more, NH-Index is a disk-based index, which allows it
to handle graph databases that do not fit in memory.
It employs a hybrid index that uses existing common
disk-based index structures, which makes implementa-
tion in existing DBMSs straightforward.

We also propose an innovative matching paradigm
for querying large graphs. Unlike most previous graph
matching tools which treat every node in a graph
equally, this matching technique distinguishes nodes
by their importance in the graph structure. The algo-
rithm first probes the NH-Index to match the impor-
tant nodes in a query graph, and then progressively ex-
tends the matches by enclosing satisfiable nearby nodes
of already matched nodes.

We have applied TALE to three real biological
datasets. Our experiments demonstrate that TALE is
able to produce useful and meaningful results in all the
three cases. In addition, our experimental evaluation
shows that TALE is very efficient for large queries, and
that the execution time grows gracefully with increas-
ing number of graphs in the database. Through com-
parisons with other existing tools, we also show that
TALE is significantly faster than existing methods.

The main contributions of this paper are as follows:

(1) We propose TALE – a general tool for approxi-
mate subgraph matching of large graph queries. TALE
uses a novel disk-based indexing method, which indexes
the neighborhood of each database node. It achieves
high pruning power and its size scales linearly with
the database size. We introduce an innovative graph
matching paradigm, which distinguishes nodes by their

importance in the graph structure, and accordingly
treats them differently in the matching process.

(2) By applying TALE to real applications, we show
its effectiveness, significant performance improvements
over existing methods, and ability to gracefully handle
large graph queries and databases.

The remainder of this paper is organized as follows:
Related work is presented in Section 2. Section 3 de-
fines the preliminary concepts. Section 4 describes
our indexing mechanism, and Section 5 introduces the
TALE algorithm. Experimental results are presented
in Section 6, and Section 7 contains our conclusions
and directions for future work.

2 Related Work

There is a long history of database research on meth-
ods for querying graphs. However, most previous works
have focused on exact graph or subgraph matching,
i.e. graph or subgraph isomorphism. Subgraph iso-
morphism was proved to be NP-complete in [5]. Ull-
mann [20] proposed a subgraph matching algorithm
based on a state space search method with backtrack-
ing. However, this algorithm is prohibitively expensive
for querying against database with a large number of
graphs. To reduce the search space, GraphGrep [17],
GIndex [22] and TreePi [25] index substructures of the
database (paths, frequent subgraphs and trees respec-
tively) to filter out graphs that do not match the query.

Several index-based methods for approximate sub-
graph matching have also been proposed. However,
most of these techniques only apply to small graphs and
allow limited approximation. Grafil [23] and PIS [24]
are both built on top of the exact subgraph matching
method GIndex. However, neither method allows node
insertion or deletion in their match models. CDIn-
dex [21] only applies to graphs with limited sizes, as it
exhaustedly enumerates and indexes all the subgraphs
in the database. GString [9] utilizes sequence matching
to answer graph queries, but it only applies to appli-
cations in which the graphs contain a small number of
basic substructures. C-Tree [6], which employs an R-
tree like index structure, is a more general tool than
the above methods. In Section 6, we compare TALE
with C-Tree. A recent method [19], called SAGA, em-
ploys a flexible graph similarity model. While SAGA
is very efficient for small graph queries, it is compu-
tationally expensive when applied to large graphs. In
contrast, TALE focuses on approximate matching for
large graph queries. In Section 6, we also compare
TALE with SAGA.

The life science community has produced vast
amount of protein interaction networks. Several tools

2

for comparing protein interaction networks have been
proposed. These include PathBlast [10], its successor
NetworkBlast [16], MaWIsh [13], and Graemlin [4]. Of
these, Graemlin is the latest method and in many ways
superior to the other methods for comparing protein
interaction networks. In Section 6, we compare TALE
with Graemlin.

3 Preliminaries

A graph G is denoted as (V,E), where V is the set
of nodes and E ⊆ V ×V is the set of (directed or undi-
rected) edges. Nodes and edges can have labels speci-
fied by mappings φ : V → Σv and ψ : E → Σe respec-
tively, where Σv is the set of node labels and Σe is the
set of edge labels. In order to uniquely identify a node,
we assign an unique id to each node in a graph. We also
impose an order on the ids. Our indexing method and
matching algorithm support both directed and undi-
rected graphs with labeled nodes and/or labeled edges.
For ease of presentation, we present our method using
undirected graphs with labeled nodes. Adaptations of
our method to other graph types are fairly straight-
forward unless discussed. The simple adaptations are
omitted in the interest of space.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs.
An exact graph match (graph isomorphism) is a bijec-
tion mapping function λ : V1 ↔ V2, in which for every
v ∈ V1, φ(v) = φ(λv), and (u, v) ∈ E1 if and only
if (λu, λv) ∈ E2. An exact subgraph match (subgraph
isomorphism) from G1 (the query) to G2 (the target) is
defined as ∃G′

2
⊆ G2, and G′

2
is an exact graph match

for G1.
Approximate graph matching allows node mis-

matches (i.e. φ(v) 6= φ(λv)), and node/edge insertions
and deletions. We define an approximate graph match
as a bijection mapping λ : V ′

1
↔ V ′

2
, where V ′

1
⊆ V1 and

V ′

2
⊆ V2. Similarly, an approximate subgraph match

from G1 (the query) to G2 (the target) is defined as
∃G′

2
⊆ G2, and G′

2
is an approximate graph match for

G1.
An approximate subgraph matching tool often re-

turns a large number of matches for a query. Often the
user is only interested in the top-K results. To return
the top-K results, TALE has to sort the matches based
on their similarities to the query. Several graph similar-
ity or distance models have been proposed, e.g. [2,19].
Each model is meaningful for some applications, but
there is no “universal” model that fits all applications.
We do not want to limit the generality of TALE by
tailoring it to a particular similarity model. Instead,
we let the users customize the similarity method that
best models their application, thereby allowing TALE

to serve as flexible graph matching tool that can be
used in a variety of graph matching applications. Sec-
tion 6 shows examples of how this similarity model can
be customized in practice.

4 The NH-Index

In this section, we introduce the novel indexing tech-
nique, Neighborhood Index (NH-Index).

4.1 Indexing Unit

The first question that arises with a graph indexing
method is the graph entities, e.g. nodes, edges, sub-
graphs, etc., that should be indexed. The NH-Index is
used by the matching algorithm to match the impor-
tant nodes in the query graph. These initial matches
for the important nodes are then extended to produce
the final matching results. A naive indexing method is
to index all the nodes in the database. This method has
the benefit that the index size grows linearly with the
number of nodes in the database, but suffers from low
pruning power, as each query node can have many false
positive matches (matches that cannot be extended
later). Our NH-Index size is linear in the number
of nodes in the database and also has a high prun-
ing power. NH-Index achieves this by incorporating
neighborhood information into the naive node indexing
method. When matching a query node, instead of look-
ing at the node in isolation, NH-Index also considers
its neighborhood. A database node matches the query
node, only if the two nodes match and their neighbor-
hoods also match. Using this technique, a large fraction
of false positives can be eliminated.

A neighborhood is defined as the induced subgraph
of a node and its neighbors (adjacent nodes). There
are three main properties that characterize the neigh-
borhood of a node: the number of neighbors, how the
neighbors connect to each other, and the labels of the
actual neighbors. The number of neighbors is simply
the degree of the node. To quantify the “connected-
ness” amongst the neighbors, we define neighbor con-
nection as the number of edges between the neighbors.
For example, the neighbor connection of the black node
in Figure 1 is 5.

To capture the neighbors of a node, a naive method
is to simply enumerate the labels of the neighbors.
However, this naive approach results in variable-length
index entries as well as large index size (in the worst
case of a clique, the storage cost is O(n2), where n is
the number of nodes in the database). An alternative
to the naive approach is to use a compact bit array to
capture the neighbors set. In the simple case when the

3

Figure 1. An example graph

total number of different labels in the problem domain
is small (i.e. |Σv| is small), we can use a deterministic
bit array to store the neighbors. The size of the bit ar-
ray is equal to |Σv|, and each bit in the array indicates
whether a neighbor with a specific label exists (set to
1) or not (set to 0). We call this bit array neighbor ar-
ray. When |Σv| is a large number, using a deterministic
bit array is very expensive. To handle this situation,
we employ the Bloom filter approach [1]. We fix the
size of the bit array to be Sbit, where Sbit is a user-
controllable parameter. A hash function is utilized to
map a node label to a bit array position. To improve
precision, multiple bit arrays and hash functions can be
used to characterize the neighbors of a node. For sim-
plicity, we only use one bit array to store the neighbor
information in this work.

In summary, the indexing unit of the NH-Index con-
tains the following information: (label, degree, nbCon-
nection, nbArray), where nbConnection is the neighbor
connection of the node, and nbArray is the neighbor
array.

4.2 Matching a Query Node

In the previous section, we discussed the indexing
unit of the NH-Index. Next, given a query node, we
examine how our method finds the matching database
nodes. For ease of presentation, we first investigate the
matching conditions for exact subgraph matching, and
then extend it to approximate subgraph matching.

For exact subgraph matching, in order to match a
query node to a database node, the two nodes must
have the same label. The degree of the query node
should be no more than that of the database node.
The same condition holds for neighbor connections.
Besides, the neighbors of the query node should have
corresponding matching nodes in the neighborhood of
the database node.

For approximate matching, we want to tolerate some
misses in the match. We introduce a single user-defined
parameter ρ, which is used to control the degree of ap-
proximation. Intuitively, ρ is the percentage of neigh-
bors of a query node that can have no corresponding
matches in the neighborhood of a database node. In
other words, nbmiss = (ρ×Nq.degree) neighbors of the
query node can be missing in the match to a database
node. If nbmiss nodes are allowed to be missing, then at

most nbcmiss = nbmiss× (nbmiss−1)/2+(Nq.degree−
nbmiss)×nbmiss neighbor connections are allowed to be
missing in the match, i.e. in the worst case, the nbmiss

nodes all connect to each other, and also connect to all
of the remaining (Nq.degree− nbmiss) nodes.

Note that we also support node mismatches (nodes
with different labels are matched) in TALE. For ease
of presentation, we delay the discussion of node mis-
matches to Section 4.5.1, and for now assume that
matching nodes are required to have the same label.

Formally, the conditions for matching a query node
to an NH-index entry for approximate subgraph match-
ing is:

Ndb.label = Nq.label (4.1)

Ndb.degree ≥ Nq.degree− nbmiss (4.2)

Sbit∑

i=1

Miss(Ndb.nbArray[i], Nq.nbArray[i]) ≤ nbmiss

(4.3)

Ndb.nbConnection ≥ Nq.nbConnection− nbcmiss

(4.4)
The Miss function in Equation 4.3 is defined as fol-

lows:

Miss(x, y) =

{
1 if x = 0 and y = 1

0 otherwise

In fact, exact subgraph matching can be viewed as
a special case of approximate subgraph matching when
ρ = 0.

Note that the conditions expressed in Equations 4.1
to 4.4 can result in producing some false positives.
Our index serves as a filtering mechanism to prune the
search space. These matches are then refined in the
matching algorithm (Section 5).

4.2.1 Node Match Quality

Given a query node, there can be more than one
database node that satisfies the conditions specified in
Equations 4.1 to 4.4. Each of these matches can have a
different match quality. Therefore, we need to measure
the quality of the node matches. This quality metric
will then be used at a later step (see Section 5.2) fol-
lowing the index probe. In this section, we describe the
match quality computation.

Let ñbmiss be the actual number of missing neigh-

bors in the node match, and ñbcmiss be the actual num-
ber of missing neighbor connections. Then the fraction
of missing neighbors of the query node can be defined as

fnb =
fnbmiss

Nq.degree
. And the fraction of missing neighbor

4

��������

�	
����	

�������
�������

	����������		�����	�

� � � �

� � � �

�����������

	�

	�

	�

	�

	�

	�

��������	
����	�

	������������

Figure 2. The hybrid index structure

connections can be defined as fnbc =
gnbcmiss

Nq.nbConnection
.

Then, we define the quality of a node match, w, as:

w =

{
2 − fnbc if ñbmiss = 0

2 − (fnb + fnbc

fnbmiss

) otherwise
(4.5)

Note that fnbc is correlated with fnb, as more miss-
ing neighbors is likely to result in more missing neigh-
bor connections in the match. Therefore, we amor-

tize fnbc by the number of missing neighbors ñbmiss in
Equation 4.5. The value of (fnb + fnbc

fnbmiss

) falls between

0 and 2. We subtract this value from 2, so that higher
w value means a better node match.

4.3 Index Structure

Next, we consider the index structure to implement
the NH-index. Rather than designing a new index
structure, which makes adoption and implementation
hard, it is desirable to consider using existing index
structures that can implement the NH-index efficiently.
A suitable index structure needs to support the condi-
tions specified in Equations 4.1 through 4.4. We pro-
pose a simple hybrid index structure (see Figure 2) for
the NH-Index.

This hybrid index structure has two levels. The
highest level of the index structure is a B+-tree index
on node label, degree and neighbor connection. This
part of the index is used for fast evaluation of the equal-
ity search on node labels (Equation 4.1), range search
on node degrees (Equation 4.2) and neighbor connec-
tions (Equation 4.4). Each leaf entry in the B+-tree in-
dex points to a second-level index. This second-level in-
dex has two components. The first is a list of database
node ids that are represented by the B+-tree leaf in-
dex entry. (Recall from Section 3 that every database
graph node has a unique node id.) These nodes have
the same unique label, degree and neighbor connection.
The second component is a bitmap index for the neigh-
bor arrays of these database nodes. Each node has one
corresponding bit array in the bitmap. Figure 2 shows
an example bitmap index for a B+-tree leaf entry that

is mapped to six distinct database nodes with the same
label, degree and neighbor connection. The bitmap in-
dex is used to expedite the evaluation of Equation 4.3
using Algorithm 1 (discussed in detail below).

Note that our hybrid index structure is easily im-
plemented in existing relational systems. The second
level indices can be implemented simply as a relation
with two attributes: one that stores the list of database
nodes, and the other that stores a bitmap (using an
extensible data type). The first level index is simply a
B+-tree built on this table. This simple implementa-
tion is robust and allows us to easily realize the NH-
Index.

4.4 Index Probing

Given a query node, we first utilize the label, de-
gree and neighbor connection information to probe the
B+-Tree index. Then, we obtain a list of bitmaps that
must be further examined using the conditions spec-
ified in Equation 4.3. An efficient algorithm for this
evaluation is shown in Algorithm 1. This algorithm
contains two steps. The first step (line 1 to 17) counts
the number of missing neighbors of the query node in
the match to each database node in a bitmap. The sec-
ond step (line 18 to 30) prunes all the database nodes
with the number of missing neighbors higher than the
user threshold. We discuss these two steps in detail
below.

If a position in the query neighbor array is set to
1, but the corresponding position in a database neigh-
bor array is 0, we count it as one miss. Step 1 of Al-
gorithm 1 simulates the binary addition operation to
count the total number of misses. We keep a counter
of countSize+1 bits (countSize = blog

2
(nbmiss)c+1)

for each database node to record the number of misses.
These counters are stored in the countSize + 1 bit
vectors Count[0] to Count[countSize], i.e. vector
Count[0] stores the bit position 0 for all the counters,
and so on. The algorithm scans through the query
neighbor array from the lowest bit (position 0) to the
highest bit (position Sbit − 1). If the current bit is
1, then the algorithm negates the bits in the corre-
sponding column of the bitmap index and adds all the
bit values to the counters of the database nodes. To
avoid overflow, the highest bit Count[countSize] for a
database node is set to 1 when the number of misses
exceeds countSize bits. An example of the first step is
shown in Step 1 of Figure 3.

The second step of Algorithm 1 prunes all the
database nodes with more than nbmiss misses. We use
two bit vectors Resulteq and Resultlt to record the
nodes with nbmiss misses and less than nbmiss misses,

5

Algorithm 1 Bitmap Probe for Approximate
Subgraph Matching (Nq, Bitmap, ρ)

Input: Nq is the query node, Bitmap is the bitmap in-
dex to be probed, assuming that there are n nodes
in the bitmap index and the size of neighbor ar-
ray is Sbit, ρ is the percentage of neighbors of a
query node that can be missing in the match to a
database node

Output: Resultle is the bit vector indicating which
nodes satisfy the query

1: // [Step 1]: count the number of missing neighbors
2: nbmiss = bρ×Nq.degreec // the threshold for the

number of missing neighbors
3: countSize = blog

2
(nbmiss)c + 1

4: for i from 0 to countSize do
5: Count[i] = (0, 0, ..., 0) // Count[i] is a bit vector

of size n
6: end for
7: for j from 0 to Sbit − 1 do
8: if Nq.nbArray[j] = 1 then
9: Carries = NOT Bitmap.Bj

10: for k from 0 to countSize− 1 do
11: Temp = Count[k] AND Carries
12: Count[k] = Count[k] XOR Carries
13: Carries = Temp
14: end for
15: Count[countSize] = Count[countSize] OR

Carries
16: end if
17: end for
18: // [Step 2]: only return nodes with no more than

nbmiss missing neighbors
19: Resultlt = (0, 0, ..., 0) // Resultlt is a bit vector of

size n
20: Resulteq = (1, 1, ..., 1) // Resulteq is a bit vector

of size n
21: for k from countSize to 0 do
22: if bit k of nbmiss’s binary format is 1 then
23: Resultlt = Resultlt OR (Resulteq AND (NOT

Count[k]))
24: Resulteq = Resulteq AND Count[k]
25: else
26: Resulteq = Resulteq AND (NOT Count[k])
27: end if
28: end for
29: Resultle = Resultlt OR Resulteq

30: return Resultle

� � � � �

�

�

�

� � � �

� � � �

� � � �

��������������

��

��

��

��

� � � � �

�	�	�	��
��

�	�	�	��
��

�	�	�	��
��

�	�	�	��
��

�

�

�

�

�

�

�

�

��
����������
�����

�
��������������������������
�

�����������

�

�

�

�

�

�

�

�

!��
"��# !��
"�"�

� �

�������$�������$�������

�

�

�

�

�

�

�

�

!��
"��# !��
"�"�

� �

�

�

�

�

�

�

�

�

!��
"��# !��
"�"�

� �

�

�

�

�

!��
"�"�

%&'(��

%&'(��

Figure 3. Example demonstrating Algorithm 1

respectively. As the algorithm scans the binary format
of nbmiss from the highest bit (position countSize) to
the lowest bit (position 0), it updates Resulteq and
Resultlt. Finally, the bitwise OR of the two vectors
gives us the right answer. Each position in the result
vector indicates whether the corresponding database
node is in the query result or not. Figure 3 also shows
an example of this step. This second step of Algo-
rithm 1 resembles the algorithm for range predicate
with a bit-sliced index introduced in [15].

Next, we analyze the complexity of Algorithm 1.
This algorithm takes O(Sbit × log(ρ× d)) bitwise oper-
ations in step 1, where d is the degree of the query node.
And step 2 takes O(Sbit) bitwise operations. Therefore,
the complexity of Algorithm 1 is O(Sbit × log(ρ × d))
bitwise operations on bit vectors. Usually, ρ×d is very
small value, thus log(ρ × d) is even smaller, and often
negligible.

We have also compared Algorithm 1 with a naive
bitmap index probing method, which scans through
every neighbor array in the bitmap index, and decides
whether the neighbor array satisfies the condition spec-
ified in Equation 4.3. We set up a simulation to test the
efficiency of Algorithm 1 against this naive method. We
randomly generated 12 bitmap indexes with increasing
sizes. The smallest bitmap index contains neighbor ar-
rays for 16 nodes, while the largest one contains neigh-
bor arrays for 32768 nodes. Each neighbor array in
the bitmap has 32 bits. We use 50 randomly generated
query neighbor arrays to probe these bitmap indexes.
Algorithm 1 shows significant performance advantage
over the naive method – the speedup ranges from 2X
for the smallest index to more than 12X for the largest
index.

6

4.5 Extensions to the Basic Approach

Next we introduce several extensions to the basic
indexing technique to improve the basic approach and
handle more general cases.

4.5.1 Node Mismatches

In the above indexing method, TALE requires two
matching nodes to have the same label. However,
real applications often need to allow matchings be-
tween nodes with different labels. We adopt the node
mismatch model introduced in [19], which implicitly
groups nodes based on a specific notion of similarity.
In this model, the grouping of nodes is defined based
on the application domain, and two nodes are allowed
to match only if they belong to the same group. For
example, if a node represents a gene, then its group
membership is defined by the orthologous group that
it belongs to (orthologous groups are organized based
on similar gene functionalities), and two nodes match
if they belong to the same orthologous group. To ac-
commodate this model, we extend the basic indexing
approach by replacing the node labels with their cor-
responding group labels and hashing the group labels
for the bit arrays. The remaining indexing method
remains unchanged. In Section 6, we show how TALE
can be applied to real applications using this node mis-
match model.

4.5.2 Directed Graphs

The above indexing method works for undirected
graphs. However, it is fairly easy to extend it to handle
directed graphs. In a directed graph, every edge has
direction. Given a node, an adjacent edge either goes
towards the node or away from the node. Therefore,
the indexing unit becomes (label, in-degree, out-degree,
in-nbConnection, out-nbConnection, in-nbArray, out-
nbArray). For the index structure, we can build one
B+-Tree index on label, in-degree, out-degree, in-
nbConnection and out-nbConnection. And each leaf
entry in the B+-Tree points to one bitmap index for
the in-nbArray and another bitmap index for the out-
nbArray. Other candidate index structures are also
possible.

4.5.3 Edge Labels

A simple extension can be made to the basic index-
ing method proposed above to handle graphs with la-
beled edges. In the basic method, we hash the labels of
neighbors to get the neighbor array. To handle labeled
edges, we hash (node label, edge label) pairs to produce

������

���	

�����	
�

���

��

��
����

������

���	

�����	
�

���

��

��
����

Figure 4. Overview of the matching algorithm

the neighbor arrays. The remaining index method is
unchanged.

Any of the above extensions can be combined to-
gether to meet the requirement of different applica-
tions.

5 The Matching Algorithm

In this section, we introduce the approximate sub-
graph matching algorithm. We first start with an
overview of this algorithm in Section 5.1, and then de-
scribe the algorithm in detail in Sections 5.2 and 5.3.

5.1 Algorithm Overview

Our approximate subgraph matching algorithm is
based on the following two observations.

Observation 1: Some nodes in a graph play more
importance roles in the graph structure than others. As
shown in Figure 1, some nodes (e.g. the black node)
connect to many other nodes. If these nodes are ab-
sent, then the graph structure quickly gets fragmented.
In contrast, some nodes (e.g. the gray node) sit on the
periphery of the graph and only connect to few other
nodes. The overall graph structure will not be dra-
matically affected by removing these nodes. There are
various ways of measuring the importance of a node
in a graph. For simplicity, we use the degree central-
ity measure in this work. In this measure, nodes with
high degrees are considered more important than nodes
with low degrees. In Section 6.5, we will evaluate the
effectiveness of this importance measure. Note that the
definition of “importance” is flexible in TALE and cus-
tomizable for specific application needs. TALE can be
easily extended to use other measures of node impor-
tance, such as closeness, betweenness, and eigenvector
centralities.

7

Algorithm 2 GrowMatch (Gq, Gdb, Mimp)

Input: Gq is the query graph, Gdb is the database
graph, Mimp contains the matches for the impor-
tant nodes in Gq

Output: M contains the node matches for the result-
ing graph match

1: put all node matches fromMimp to a priority queue
Q sorted by their qualities

2: while Q is not empty do
3: pop up the best node match (Nq, Ndb) from Q
4: put (Nq, Ndb) into M
5: ExamineNodesNearBy(Gq, Gdb, Nq, Ndb, M ,

Q) // finding new matches for nodes nearby Nq

6: end while
7: return M

Observation 2: A good approximate match should
be more tolerant towards missing unimportant nodes
in the query than missing important nodes. In other
words, most of the important nodes in the query should
be present in the match, while missing unimportant
nodes is more tolerated. In addition, the number of
matched important nodes, and the qualities of these
node matches can be used to estimate the quality of an
approximate subgraph match.

Based on these two observations, we introduce a
new approximate subgraph matching algorithm. The
overview of this algorithm is as follows: First, the
algorithm selects a number of important nodes from
the query based on the specified importance measure
(degree centrality in this work), and then probes the
NH-Index to find matching nodes for these important
query nodes. These matching node pairs serve as an-
chor points for producing graph matches. In the sec-
ond step, for each matching database graph, the algo-
rithm extends the graph match from the anchor points
by progressively adding satisfiable nearby nodes of al-
ready matched nodes. The entire matching process is
outlined in Figure 4.

5.2 Step 1: Match the Important Nodes

In this step, the algorithm selects a number of im-
portant nodes from the query and probes the NH-Index
to match these important nodes.

The algorithm first needs to decide how many nodes
count as important nodes. We introduce a parameter
Pimp, defined as the fraction of important nodes in the
query. Given Pimp, we sort the nodes in the query by
their importance (degree centrality in this work) and
select the top Pimp percent as the important nodes.
In Section 6.2, we show how to choose the Pimp value

Algorithm 3 ExamineNodesNearBy (Gq, Gdb,
Nq, Ndb, Mc, Qc)

Input: Gq is the query graph, Gdb is the database
graph, Nq is a node in Gq, Ndb is the node in Gdb

matched to Nq, Mc contains all the current node
matches found so far, Qc contains all the candidate
node matches to be examined

1: NB1q = immediate neighbors of Nq that have no
matches in Mc

2: NB2q = nodes two hops away from Nq that have
no matches in Mc

3: NB1db = immediate neighbors of Ndb that have no
matches in either Mc or Qc

4: NB2db = nodes two hops away from Ndb that have
no matches in either Mc or Qc

5: MatchNodes(Gq, Gdb, NB1q, NB1db, Mc, Qc)
6: MatchNodes(Gq, Gdb, NB1q, NB2db, Mc, Qc)
7: MatchNodes(Gq, Gdb, NB2q, NB1db, Mc, Qc)

based on graph properties of specific applications.
After selecting the important nodes, the algorithm

probes the NH-Index for each important node as dis-
cussed in Section 4.4. After the index probe, we obtain
a list of database graphs that have matches for some
or all of the important nodes in the query. A match
score is also calculated for each matching node pair us-
ing Equation 4.5. In the results produced by the index
probes, a single important query node can be mapped
to multiple database nodes and vice versa. Since the
main purpose of this first step is to find the anchor
points that can be expanded in the next step, we need
to find one-to-one node mappings between the query
and database nodes. For this part, we use a maxi-
mum weighted bipartite graph matching algorithm (us-
ing node match scores as weights) from the LEDA-
R 3.2 library (http://www.algorithmic-solutions.
com/index.htm).

5.3 Step 2: Extend the Match

Step 1 of the matching algorithm produces a list of
candidate database graphs. For each candidate graph,
Step 2 of the algorithm utilizes the node matches pro-
duced by Step 1 as anchor points to match the remain-
ing nodes in the database and query graphs, and pro-
duces the final graph match.

The overall idea of this step is as follows. For each
node that is already matched, we try to match its
“nearby” nodes (as described below these includes not
just the adjacent nodes, but also nodes that are two
hops away). We perform this extension progressively
until no more nodes can be added to the match. The

8

detailed algorithm is shown in Algorithm 2, 3 and 4.
Algorithm 2 is the main procedure for step 2. It

first puts all the important node matches (the anchor
points) into a priority queue sorted by the qualities of
the node matches (cf. Section 4.2.1). In each iteration
of the loop, we pop up the best node match (with the
highest quality) from the queue and put it into the
final graph match. In addition, we examine the nearby
nodes of the query node, as well as the nearby nodes
of the database node, to see whether any of them can
be matched. If so, we add these new node matches to
the priority queue. This process ends when the priority
queue is empty.

Algorithm 3 implements the ExamineNodesNearBy
function called by Algorithm 2. Based on a pair of al-
ready matched nodes, this function tries to match their
nearby nodes. In order to allow more flexibility in the
approximate matching, we do not limit the matching
extensions to just adjacent nodes of the query node
and the database node. Instead, this algorithm ex-
amines nodes at most two-hops away from the query
node and the database node. Note that this algorithm
is generic. It can be easily extended to match nodes
more than two-hops away to allow more approximation
(at the expense of an increased computational cost).

Algorithm 4 shows the details of the MatchNodes
function called by Algorithm 3. For each node from
the given set of query nodes, this algorithm finds the
best matching node from the set of database nodes. If
the new node match does not conflict with any existing
ones in the priority queue, it is simply put into the
priority queue. However, if this node match is better
than an existing match in the queue, the existing one
is replaced with the new one.

Note that our algorithm only produces one match for
each database graph. In some applications, users may
want more than one match for each database graph.
In this case, we can extend our matching algorithm to
retain more than one set of anchor points (in step 1,
instead of only retaining the maximum weighted bipar-
tite matching, also retain other high weighted maximal
bipartite matchings) and then extend each of them to
produce a match.

6 Evaluation

In this section, we apply TALE to three real biolog-
ical applications, and present results evaluating TALE
with three measures: effectiveness (whether the results
produced by the tool are useful and meaningful in real
life applications), efficiency and scalability.

Note that while the applications discussed in this
paper are from life sciences, TALE can be applied to

Algorithm 4 MatchNodes(Gq, Gdb, Sq, Sdb, Mc,
Qc)

Input: Gq is the query graph, Gdb is the database
graph, Sq is a set of nodes in Gq, Sdb is a set of
nodes in Gdb, Mc contains all the current matches
found so far, Qc contains all the candidate matches
to be examined

1: for every node Nq in Sq do
2: Ndb=the best mapping of Nq in Sdb

3: if Ndb=null then
4: continue
5: end if
6: if Nq has no matches in Qc then
7: put (Nq, Ndb) into Qc

8: remove Ndb from Sdb

9: else if (Nq, Ndb) is a better node match then
10: remove the existing match of Nq from Qc

11: put (Nq, Ndb) into Qc

12: remove Ndb from Sdb

13: end if
14: end for

any area in which there is a need for approximate sub-
graph matching. Other such areas include comparing
RDF graphs in semantic web applications, and compar-
ing parse trees produced by natural language parsers
for literature mining. We have chosen to focus on life
sciences applications since we have actual collaborators
who have ready applications for our tool.

TALE is implemented in C++ on top of PostgreSQL
(http://www.postgresql.org). The execution times
reported in this section correspond to the running
times of this C++ program including the DBMS access
times. All experiments were run on a 2.8GHz Pentium
4 Fedora Core 2 machine, with 2GB memory, and a
250GB SATA disk. We use PostgreSQL version 8.1.3
and set the buffer pool size to 512MB.

6.1 Experimental Datasets

BIND Dataset: We use the BIND [3] dataset (ver-
sion May 25, 2006) to demonstrate the application
of TALE for comparing Protein Interaction Networks
(PINs). A PIN is a large graph, in which nodes repre-
sent proteins and edges indicate protein-protein inter-
actions. Comparing PINs of different species allows a
biologist to discover the evolutionary conserved func-
tional units across species. However, due to the high
error rate of detection methods, PINs are noisy in na-
ture [18]. Therefore, approximate subgraph matching
is useful for comparing PINs.

KEGG Dataset: This dataset consists of biologi-

9

Degree

Fr
eq

ue
nc

y

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

Degree

Fr
eq

ue
nc

y

1 2 3 4 5 6 7 8

0.
0

0.
4

0.
8

Degree

Fr
eq

ue
nc

y

2 4 6 8 10 12 14

0.
00

0.
10

0.
20

Figure 5. Degree distribu-
tion for the BIND dataset

Figure 6. Degree distribu-
tion for the KEGG dataset

Figure 7. Degree distribu-
tion for the ASTRAL dataset

cal pathways from the well-known KEGG database [12]
(downloaded on Feb 28, 2007). We use this dataset
to demonstrate the application of TALE for biologi-
cal pathways analysis. A pathway is a directed graph
with nodes representing cellular entities such as pro-
teins and regulatory elements, and edges representing
their interactions. The graph shows the sequence of
actions that lead to different cellular entities interact-
ing to carry out some function. Similar to PINs, each
interaction in a pathway is based on an experimentally
observed phenomenon. Therefore, pathway data are
often noisy and incomplete. Nature is very effective at
modularizing complex actions and reusing subcompo-
nents. There are a lot of common building blocks in
the cellular machinery that often get “reused” in differ-
ent pathways. By investigating the similarities shared
by different pathways, a biologist can generate various
hypotheses that can help refine the understanding of a
pathway of interest.

ASTRAL Dataset: To demonstrate the potential
application of TALE for Protein Structure Matching,
we use the ASTRAL [8] dataset (version 1.71). This
dataset contains the 3D structures of protein domains.
A domain is an independent, self-stabilizing unit of a
protein, usually pertinent to the function of the pro-
tein they belong to. In biology, structure similarity is
often a good indicator of function similarity. 3D struc-
tures can be translated into contact graphs, and struc-
ture matching can be achieved by approximate sub-
graph matching on the corresponding contact graphs.
In a contact graph, nodes represent amino acids (since
there are 20 different kinds of amino acids, there are 20
distinct node labels) and edges indicate that the cor-
responding amino acids physically interact with each
other. This physical interaction is usually decided by a
threshold of the contact distance. In our experiment,
we used the widely used 7Å threshold [7] to convert
each domain 3D structure into a contact graph.

6.2 Parameterizations

In this section, we demonstrate how to choose the
values of the parameters used in TALE for the three
experimental datasets. TALE requires the setting of
the following three parameters: the neighbor array size
Sbit in the NH-Index, the approximation ratio ρ, and
the fraction of important nodes Pimp in a query graph.

The size of the neighbor bit array is related to the
number of node labels (or the number of group labels
when allowing node mismatches, cf. Section 4.5.1) in
an application. For protein structure matching, there
are only 20 amino acids. Two nodes of the contact
graphs can be matched only if they represent the same
amino acid. Therefore, we set Sbit to be 32 (to make it
fit in an 32-bit integer), and we use the exact value of
the amino acids to set the bit array (instead of using a
hash function).

For pathway analysis and protein interaction net-
works comparison, we need to match nodes based on
function or sequence similarity. For the KEGG dataset,
we utilize the KEGG Orthologous group (which classi-
fies proteins based on function similarity). Two nodes
can be matched only if they belong to the same KEGG
Orthologous group. For the BIND dataset, we used
CD-HIT [11] to cluster the proteins based on their se-
quence similarity1. And two nodes can be matched
only if they belong to the same cluster. There are to-
tally 8814 KEGG Orthologous groups and 22311 CD-
HIT clusters. We set Sbit to be 64 and 96 for KEGG
and BIND datasets, respectively. In fact, we have ex-
perimented with other Sbit values, and there is no sig-
nificant difference in performance for different Sbit val-
ues. Therefore, in the interest of space, we do not show
the effect of different neighbor array sizes.

The approximation ratio ρ indicates the percentage
of neighbors of a query node that can have no corre-
sponding matchings in the neighborhood of a database

1Proteins in each cluster share at least 40% sequence identity.

10

Table 1. PINs of human, mouse and rat
nodes # edges

human 8470 11260
mouse 2991 3347

rat 830 942

node. It is related to the similarity requirement of a
specific application. For simplicity, we set this param-
eter to be 25% for all three applications.

The fraction of important nodes in a query graph
Pimp is highly associated with the graph properties in
an application. As we use degree centrality to measure
the importance of a node, we study the degree distribu-
tions of the 3 applications. The representative degree
distributions of the 3 datasets are shown in Figures 5
through 7. The degree distribution for the KEGG and
BIND datasets is highly right skewed. In fact, studies
have shown that both pathways and PINs show power-
law degree distribution [14]. Only very small fraction
of nodes have high degrees. We set Pimp = 15% for the
KEGG and BIND datasets. For the ASTRAL dataset,
the degree distribution is bell shape. Around 25% of
nodes have degree more than 8, which we consider as
important nodes (Pimp = 25%).

6.3 Effectiveness Evaluation

In this section, we present results examining the ef-
fectiveness of TALE. We also compare TALE to C-
Tree [6], SAGA [19], and Graemlin [4].

6.3.1 Protein Interaction Networks Compari-
son

Graph matching techniques are used on PINs to find
conserved components shared between the query net-
work and each network in the database. The PIN for a
well studied species is usually a large graph with hun-
dreds to thousands of nodes and edges. C-Tree [6] is
not applicable for comparing PINs as the implementa-
tion does not allow node mismatches (nodes with dif-
ferent labels to be matched), which is a requirement
for this application. On the other hand, TALE handles
node mismatches by utilizing the group labels produced
by existing protein clustering tools (see Section 6.2).
SAGA can be used for querying PINs, but querying
such large graphs using SAGA is prohibitively expen-
sive.

For comparing PINs, the tools most closely related
to TALE are NetworkBlast [16], MaWISh [13] and
Graemlin [4]. Since these tools largely deal with pair-
wise comparison, we only focus on pairwise PIN com-

Table 2. Effectiveness for comparing PINs
KEGGs KEGG time

hit coverage (sec)
rat vs. human

Graemlin 0 NA 910.0
TALE 6 3.2% 0.3

mouse vs. human
Graemlin 18 5.0% 16305.5

TALE 42 13.6% 0.8

parison in this experiment. In [4], the authors showed
that Graemlin is better at identifying conserved func-
tional modules than the other methods. Therefore, we
only compare TALE with Graemlin.

We choose the PINs of three well studied mammals:
human, mouse and rat for this experiment. The statis-
tics for these three networks are described in Table 1.

We use both TALE and Graemlin (using code down-
load from http://graemlin.stanford.edu/) to query
the rat and the mouse PINs against the human PIN.
We compare the two methods using the effectiveness
measures: the number of KEGGs hit and the average
KEGG coverage as proposed in [4]. The number of
KEGGs hit is the number of pathways in the KEGG
database [12] aligned between 2 species. A KEGG
pathway is considered as a hit if at least 3 proteins
in the pathway are aligned to their counterparts in the
pathway of the other species. KEGG coverage is the
fraction of proteins aligned within a pathway.

As shown in Table 2, TALE achieves significant
larger number of KEGGs hit and better average KEGG
coverage than Graemlin. Most noticeable is the big dif-
ference in running time. TALE only takes about 1 sec-
ond for the two queries while Graemlin takes 4.8 hours.
In addition, TALE only takes about 1 second to build
the index on the human PIN.

Table 3. The statistics of KEGG pathways for
the 7 well-studied model species

#pathways avg #nodes avg #edges
human 173 83.3 38.5
mouse 169 83.8 38.3

rat 161 83.6 30.3
fly 103 97.3 12.7

worm 97 100.4 13.4
yeast 87 106.1 20.8
ecoli 95 102.1 25.1
total 885 91.2 28.3

11

pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1

recall
0 0.2 0.4 0.6 0.8 1

TALE
SAGA pr

ec
is

io
n

0

0.2

0.4

0.6

0.8

1

recall
0 0.2 0.4 0.6 0.8 1

TALE
SAGA pr

ec
is

io
n

0

0.2

0.4

0.6

0.8

1

recall
0 0.2 0.4 0.6 0.8 1

TALE
SAGA

Figure 8. ROC curves for
human pathways

Figure 9. ROC curves for
mouse pathways

Figure 10. ROC curves for
rat pathways

6.3.2 Biological Pathways Analysis

This experiment uses the KEGG pathway dataset.
Again since we allow node mismatches in pathway anal-
ysis, C-Tree is not applicable. Therefore for this exper-
iment, we only compare TALE with SAGA. SAGA was
configured using the parameter settings in [19].

Close related species in evolution (e.g. mouse and
rat) share significant similarities in their corresponding
pathways. For example, the WNT pathways of mouse
and rat are very similar to each other, but are more
different from the WNT pathway of fly. This provides
us a way to evaluate the effectiveness of TALE for the
application of biological pathways analysis.

For this experiment, we choose the pathways of the
7 well-studied model species in KEGG: human, mouse,
rat, fly, worm, yeast and ecoli. The statistics of this
dataset is summarized in Table 3. Human, mouse and
rat are more closely related to each other in evolution-
ary than the other 4 species. Therefore, we expect the
results produced by TALE can reflect the fact that the
pathways for these 3 species will be more similar to
each other.

We used every pathway for human, mouse and rat
to query the database. Note that for some large queries
(e.g. human fatty acid biosynthesis pathway with 163
nodes and 151 edges), SAGA could not finish in a rea-
sonable amount of time (taking over 1 hour), while
TALE can finish every query within 1.8 seconds. For
the queries SAGA can finish within 1 hour, the average
running time for SAGA is about 12 seconds, while the
average time for TALE is 0.14 seconds.

To evaluate the effectiveness of the results, we em-
ploy the measures: recall and precision. Recall is de-
fined as the fraction of the retrieved relevant results
out of all the relevant results. Precision is the fraction
of the retrieved relevant results out of all the retrieved
results. A matching result is considered relevant if it is
the same pathway from a species close in evolution. For
example, if the query is human WNT pathway, then a
relevant result can be human, mouse or rat WNT path-

way.
To keep this experiment manageable, we kill any

SAGA query if it runs over 1 hour. For fair compari-
son, we only compare TALE with SAGA for the query
results that SAGA can finish within the time limit.
We employ the SAGA distance model (using the de-
fault parameters in [19]) to rank the results returned
by both TALE and SAGA. We compute the average
precision and recall values for human, mouse and rat
pathway queries. The ROC curves are shown in Fig-
ure 8 to Figure 10. SAGA and TALE show very com-
parable effectiveness for pathway analysis, with SAGA
having a slight advantage.

6.3.3 Protein Structure Matching

In this experiment, we evaluate the effectiveness of
TALE for protein structure matching using the AS-
TRAL dataset.

This application generally does not require node
mismatches, therefore we can compare TALE with C-
Tree. However, the C-Tree implementation that we got
from the authors is memory-based. In other words, the
whole index needs to reside in memory for query pro-
cessing. Naturally, as the database size increases, the
index will soon grow out of memory. For example,
C-Tree cannot build an index on the entire ASTRAL
dataset (which has 75626 domains). In contrast, NH-
Index is a disk-based index technique and is not limited
by the memory size. As we will show in Section 6.4.3,
TALE can easily handle the entire ASTRAL dataset,
and our disk-based index structure scales nicely with
increasing database sizes. For a fair comparison, we
employ the similarity model used by C-Tree [6] to rank
the matching results.

ASTRAL contains 75626 domains, which are classi-
fied into 7275 families. Domains in each family present
significant structural similarity. This provides us with
a way of evaluating the effectiveness of TALE: large
fraction of the top matching results are expected to
belong to the same family of the query domain.

12

pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1

recall
0 0.2 0.4 0.6 0.8 1

TALE
C−Tree

Figure 11. ROC curves using the ASTRAL
dataset
We test TALE and C-Tree on a subset of ASTRAL,

so that C-Tree can hold the index in memory. The
dataset is created as follows: We randomly choose 1300
families (with more than 10 domains in each family),
and then randomly choose 10 domains from each fam-
ily. The average number of nodes and edges for each
graph are 186.6 and 734.2, respectively.

We randomly choose 20 queries (with 346.4 nodes
and 971.6 edges per graph on average) from the 13000
domains. We gradually increase the number of results
returned by TALE and C-Tree, and measure the mean
recall and mean precision for both methods. The recall
and precision ROC curves are shown in Figure 11. The
precision for both methods stays very high until the re-
call reaches round 0.6. This is because both methods
return relevant results as their top results. However,
as the recall further increases, the precision drops more
steeply. After the recall reaches around 0.8, return-
ing more results will not improve the recall any more.
This is because the classification system in ASTRAL
is not purely based on structure similarity, but also
on extensive domain knowledge. No method based on
pure structural similarity is likely to perfectly match
this classification system. However, TALE could po-
tentially be used for classifying novel family members
in combination with the domain knowledge provided
by experts.

Although TALE and C-Tree are very comparable in
their effectiveness for this dataset, TALE is faster than
C-Tree. The average running time for the 20 queries

Table 4. Four BIND sub-datasets for the scal-
ability experiment

avg avg index index
#graphs #nodes #edges size time

D1 10 939.1 1093.2 1.4MB 13.2s
D2 20 938.5 1691.9 2.9MB 31.1s
D3 30 939.5 1920.7 4.5MB 50.4s
D4 40 940.1 1743.6 5.7MB 62.7s

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

R
un

in
g

Ti
m

e
(s

ec
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Queries (#nodes, #edges)

(6
3,

52
)

(9
3,

77
)

(1
00

,6
7)

(1
46

,9
9)

(1
82

,1
27

)

(3
06

,3
13

)

(6
01

,4
07

)

(1
85

0,
15

93
)

(2
99

1,
33

47
)

(3
05

9,
48

50
)

D1 D2 D3 D4

Figure 12. Scalability Experiment using the BIND
dataset

is 34.8 seconds using TALE, but 61.9 seconds using C-
Tree. TALE is almost 2 times faster than C-Tree (even
though it is a disk-based implementation and is going
through PostgreSQL).

6.4 Efficiency and Scalability Evaluation

In this experiment, we test the efficiency and scala-
bility of TALE for the three applications.

6.4.1 Experiment on BIND Dataset

In this experiment, we evaluate the efficiency and scal-
ability of TALE on the BIND dataset. BIND has PINs
for 757 species, but most PINs are incomplete. We
choose the largest 40 PINs from BIND. The largest
graph contains 8470 nodes and 11260 edges. The small-
est of these 40 PINs contains 45 nodes and 105 edges.
On average, each graph has 940.1 nodes and 1743.6
edges. The characteristic of this data is that it con-
tains large-sized graphs. To measure the scalability of
TALE, we formed 4 datasets D1 to D4 with increasing
sizes 2. The statistics of the four datasets are sum-
marized in Table 4. The index sizes and the index
construction times are also shown in this table. As the
database size increases, the index size grows at a near-
linear rate and the index construction time increases
steadily.

We choose the 10 graphs in dataset D1 as the
queries. For this experiment, we do not restrict the
number of results returned by each query. The execu-
tion time for the 10 queries on the 4 datasets is shown
in Figure 12. Even for the largest query with 3059

2The 4 datasets are formed as follows. We first divide the 40
PINs into 4 balanced groups each with 10 PINs and roughly same
total number of nodes. We randomly select one group as D1,
randomly add another group to D1 to form D2, then randomly
add one of the remaining groups to D2 to form D3, finally D4
contains all the 4 groups.

13

nodes and 4850 edges on the largest D4 dataset, the
query executes in about 0.7 seconds. The execution
time grows as the size of the database increases. For
most queries, the growth ratio shows near-linear trend.
Note that query execution time is not just influenced
by the query and database sizes, but also by the result
cardinality. In Figure 12, Q2, Q3 and Q4 increase in
the query size, but the execution time increases from
Q2 to Q3 while decreases from Q3 to Q4 for D2, D3 and
D4 datasets. The reason is that Q3 has more database
matches than Q2 and Q4. (Recall that in this experi-
ment, we do not restrict the number of results returned
by each query.) For Q3, there is a jump from D1 to D2,
because more matching graphs are found in D2. But
the number of matches remain roughly the same from
D2 to D4 (and so does the execution time). Similar
explanations apply to other queries in this figure.

6.4.2 Experiment on KEGG Dataset

In this section, we test the efficiency and scalability of
TALE on increasing sizes of KEGG pathway databases.
The smallest dataset contains all the human and mouse
pathways. We increase the database size by including
pathways of more species until it contains all the 41550
KEGG pathways of 538 species. The index construc-
tion time and index sizes for these increasing databases
are shown in Figure 13 and Figure 14, respectively.
Our indexing technique indexes the neighborhood of
each database node. This novel technique gives us the
near linear increase in the index construction time and
index size as shown in Figure 13 and Figure 14.

To test query execution time, we randomly selected
20 human pathways (76.7 nodes and 29.9 edges per
graph on average). For each query, we ran TALE to
get the top 20 results. The average running time for the
20 queries on increasing database sizes is reported in
Figure 15. As shown in this figure, the query execution
time increases steadily with the database size.

6.4.3 Experiment on ASTRAL Dataset

In this experiment, we evaluate the efficiency and scala-
bility of TALE on the ASTRAL datasets with increas-
ing sizes. The smallest dataset contains 200 graphs,
while the largest one contains all the 75626 graphs in
ASTRAL. As shown in Figure 16 and Figure 17, the
index construction time and index size show steady
growth with increasing database size.

We randomly selected 20 queries (153.1 nodes and
592.0 edges per graph on average) from the smallest
dataset, and ran it on the increasing sized databases.
For each query, we only retain the top 20 results. The
average execution time for the 20 queries is shown in

Figure 18. The running time scales nicely with the
database size.

6.5 Discussion and Summary

We note that TALE is a heuristic algorithm. It does
not guarantee that it will find the best or all matches.
However, given that finding the best/all matches is
NP-hard [2] and infeasible in practice, heuristics are
inevitable. For most real graphs, our heuristics achieve
high accuracy compared with existing tools, as shown
in our experiments.

In this work, we have used degree centrality to mea-
sure the importance of nodes. To show the effectiveness
of this measure, we compare TALE to a variant called
TALE-Random, where the “important” nodes are sim-
ply a randomly selected subset of the nodes. We ran
the BIND mouse vs human test (Table 2, Row 3) using
TALE-Random. We compare the number of matching
nodes, the number of matching edges, the number of
KEGGs hit and the average KEGG coverage for the
two methods. The results are 106, 61, 42, 13.6% for
TALE and 85, 24, 8, 5.8% for TALE-Random. This
test shows the effectiveness of this node importance
measure for this application.

To summarize the experimental section, our exten-
sive empirical evaluation demonstrates the effective-
ness, efficiency and scalability of TALE. We have com-
pared TALE to three existing tools, SAGA, C-Tree and
Graemlin. TALE is a flexible tool and the only tool
that can easily be applied across the three applications
considered in our evaluation. Furthermore, TALE pro-
duces useful and meaningful results for all the three
applications, and is also significantly faster than these
existing tools. Our results also show that TALE is scal-
able for large queries and large databases.

7 Conclusions and Future Work

In this paper we have presented TALE – an ap-
proximate subgraph matching tool for matching graph
queries with a large number of nodes and edges. TALE
employs a novel indexing technique, which achieves
a high pruning power and scales linearly with the
database size. This index structure can be easily im-
plemented in existing relational systems. The innova-
tive matching algorithm used by TALE distinguishes
nodes by their importance to the graph structure. This
algorithm first matches the important nodes in the
query, and then extends them to produce larger graph
matches. TALE is a general tool for approximate sub-
graph matching queries, and can be easily customized
to meet the requirement of different applications. Our

14

C
on

st
ru

ct
io

n
Ti

m
e

(s
ec

)

0

20

40

60

80

100

120

Database Size (# graphs)
0 7000 14000 21000 28000 35000 42000

In
de

x
S

iz
e

(M
B

)

0

100

200

300

400

Database Size (# graphs)
0 7000 14000 21000 28000 35000 42000

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

0

0.2

0.4

0.6

0.8

1

1.2

Database Size (# graphs)
0 7000 14000 21000 28000 35000 42000

Figure 13. Index Construc-
tion Time with Increasing
KEGG Database Size

Figure 14. Index Size with
Increasing KEGG Database
Size

Figure 15. Query Execution
Time with Increasing KEGG
Database Size

C
on

st
ru

ct
io

n
Ti

m
e

(s
ec

)

0

1000

2000

3000

4000

5000

6000

Database Size (# graphs)
0 19000 38000 57000 76000

In
de

x
S

iz
e

(M
B

)

0

440

880

1320

1760

2200

Database Size (# graphs)
0 19000 38000 57000 76000

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

0

15

30

45

60

75

90

Database Size (# graphs)
0 19000 38000 57000 76000

Figure 16. Index construc-
tion time for the ASTRAL
dataset

Figure 17. Index size for the
ASTRAL dataset

Figure 18. Query execu-
tion time for the ASTRAL
dataset

empirical evaluations demonstrate the improved effec-
tiveness and efficiency of TALE over existing methods.
As part of future work, we plan on applying TALE to
other applications, such as social networks and RDF
graph datasets, to further evaluate the generality of
TALE.

Acknowledgment

This research was primarily supported by the Na-
tional Science Foundation under grant DBI-0543272,
the National Institutes of Health under grant 1-U54-
DA021519-01A1 and by an unrestricted research gift
from Microsoft Corp.

References

[1] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–
426, 1970.

[2] H. Bunke. On a relation between graph edit dis-
tance and maximum common subgraph. Pattern
Recogn. Lett., 18(8):689–694, 1997.

[3] C. Alfarano et al. The biomolecular interaction
network database and related tools 2005 update.
Nucleic Acids Res., 33:D418–D424, 2005.

[4] J. Flannick, A. Novak, B. S. Srinivasan, H. H.
McAdams, and S. Batzoglou. Græmlin: General
and robust alignment of multiple large interaction
networks. Genome Res., 16:1169–1181, 2006.

[5] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York,
NY, USA, 1979.

[6] H. He and A. K. Singh. Closure-tree: an index
structure for graph queries. In ICDE, 2006.

[7] J. Hu, X. Shen, Y. Shao, C. Bystroff, and M. J.
Zaki. Mining protein contact maps. In BIOKDD,
2002.

[8] J. Chandonia et al. The astral compendium in
2004. Nucleic Acids Res., 32:D189–D192, 2004.

[9] H. Jiang, H. Wang, P. S. Yu, and S. Zhou. Gstring:
A novel approach for efficient search in graph
databases. In ICDE, 2007.

[10] B. P. Kelley, B. Yuan, F. Lewitter, R. Sharan,
B. R. Stockwel, and T. Ideker. Pathblast: a tool
for alignment of protein interaction networks. Nu-
cleic Acids Res., pages W83–W88, 2004.

15

[11] W. Li, L. Jaroszewski, and A. Godzik. Clustering
of highly homologous sequences to reduce the size
of large protein database. Bioinformatics, 17:282–
283, 2001.

[12] M. Kanehisa et al. The kegg resources for deci-
phering the genome. Nucleic Acids Res., 32:D277–
D280, 2004.

[13] M. Koyuturk et al. Pairwise alignment of protein
interaction networks. Journal of Computational
Biology, 13(2):182–199, 2006.

[14] M. E. J. Newman. The structure and function of
complex networks. SIAM Review, 45:167, 2003.

[15] P. O’Neil and D. Quass. Improved query perfor-
mance with variant indexes. In SIGMOD, 1997.

[16] R. Sharan et al. Conserved patterns of protein
interaction in multiple species. PNAS, 102:1974–
1979, 2005.

[17] D. Shasha, J. T.-L. Wang, and R. Giugno. Algo-
rithmics and applications of tree and graph search-
ing. In PODS, 2002.

[18] E. Sprinzak, S. Sattath, and H. Margalit. How re-
liable are experimental protein-protein interaction

data? Journal of Molecular Biology, 327(5):919–
923, 2003.

[19] Y. Tian, R. C. McEachin, C. Santos, D. J. States,
and J. M. Patel. SAGA: a subgraph matching tool
for biological graphs. Bioinformatics, 23(2):232–
239, 2007.

[20] J. R. Ullmann. An algorithm for subgraph isomor-
phism. J. ACM, 23(1):31–42, 1976.

[21] D. Williams, J. Huan, and W. Wang. Graph
database indexing using structured graph decom-
position. In ICDE, 2007.

[22] X. Yan, P. S. Yu, and J. Han. Graph indexing: a
frequent structure-based approach. In SIGMOD,
2004.

[23] X. Yan, P. S. Yu, and J. Han. Substructure sim-
ilarity search in graph databases. In SIGMOD,
2005.

[24] X. Yan, F. Zhu, J. Han, and P. S. Yu. Search-
ing substructures with superimposed distance. In
ICDE, 2006.

[25] S. Zhang, M. Hu, and J. Yang. Treepi: A new
graph indexing method. In ICDE, 2007.

16

