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Abstract— Large graph datasets are common in many emerg-
ing database applications, and most notably in large-scale sci-
entific applications. To fully exploit the wealth of information
encoded in graphs, effective and efficient graph matching tools
are critical. Due to the noisy and incomplete nature of real
graph datasets, approximate, rather than exact, graph matching is
required. Furthermore, many modern applications need to query
large graphs, each of which has hundreds to thousands of nodes
and edges.

This paper presents a novel technique for approximate match-
ing of large graph queries. We propose a novel indexing method
that incorporates graph structural information in a hybrid
index structure. This indexing technique achieves high pruning
power and the index size scales linearly with the database size.
In addition, we propose an innovative matching paradigm to
query large graphs. This technique distinguishes nodes by their
importance in the graph structure. The matching algorithm first
matches the important nodes of a query and then progressively
extends these matches. Through experiments on several real
datasets, this paper demonstrates the effectiveness and efficiency
of the proposed method.

I. INTRODUCTION

Graphs provide a natural way to model data in a wide
variety of applications, such as social networks, road networks,
network topology, protein interaction networks and protein
structures. Many graph databases are growing rapidly in size.
The growth is both in the number of graphs and the sizes
of graphs (the number of nodes and the number of edges).
For example, the number of interactions (edges in protein
interaction networks) in the BIND database [3] grew about 10
folds from 2002 September to 2004 September, and almost
doubled after that. The number of protein structures (graphs)
in the ASTRAL database [8] has increased more than 3 folds
since 2002. There is a critical need for efficient and effective
graph querying tools for querying and mining these growing
graph databases.

The database community has had a long-standing interest
in querying graph databases [6], [9], [13], [15], [17]–[22].
These previous studies have mostly been carried out within the
context of precise graph data, and have focused on exact graph
or subgraph matching queries. However, many real graph
datasets are noisy and incomplete in nature. For example, it
is well known that protein interaction networks produced by
high-throughput methods contain many false positives [14].
Moreover, the discovered interactions only represent a small
fraction of the true network. As a result, exact graph or

subgraph matching often fails to produce useful results.
In contrast, approximate graph or subgraph matching plays

a critical role in these applications. Approximate matching
allows node/edge insertions and deletions, and node/edge
mismatches. Furthermore, many new graph applications prefer
approximate matching results rather than exact ones as they
can provide more information such as what might be missing
or spurious in a query or a database graph.

In addition, most existing graph matching methods are
applicable to databases that contain graphs with small sizes,
i.e. each graph has a small number (tens) of nodes and edges.
Moreover, the query graphs allowed in these methods are also
small in size. However, in many new applications, both the
query and database graphs are “large”. Each graph can contain
hundreds to thousands of nodes and edges. For example, in life
sciences applications, protein interaction networks for individ-
ual species are often matched to determine similarities and
differences across species. Each protein interaction network is
large, and typically contains hundreds to thousands of nodes
and edges in each graph.

The problem that we address in this paper is approximate
subgraph matching of large query graphs. Namely, given a
large query graph, with hundreds to thousands of nodes and
edges, and a database of large graphs, we want to find the
subgraphs in the database that are similar to the query.

In this paper we present an index-based method for
approximate subgraph matching, called TALE (a Tool
for Approximate Subgraph Matching of Large Queries
Efficiently). TALE employs a novel graph indexing method,
called NH-Index (Neighborhood Index). Most existing graph
indexing methods only index subgraphs (paths, trees or general
subgraphs), which can lead to index sizes that are exponential
in the database size. The indexing unit of NH-Index is the
neighborhood of each database node. The neighborhood con-
cept captures the local graph structure around each node, and
results in an index with a high pruning power. At the same
time, the number of indexing units is equal to the number
of nodes in the database, which allows the index to grow
linearly with the database size. Furthermore, NH-Index is a
disk-based index, which allows it to handle graph databases
that do not fit in memory. It employs a hybrid index that uses
existing common disk-based index structures, which makes
implementation in existing DBMSs straightforward.

We also propose an innovative matching paradigm for



querying large graphs. Unlike most previous graph matching
tools which treat every node in a graph equally, this matching
technique distinguishes nodes by their importance in the graph
structure. The algorithm first probes the NH-Index to match
the important nodes in a query graph, and then progressively
extends the matches by enclosing satisfiable nearby nodes of
already matched nodes.

We have applied TALE to two real biological datasets.
Our experiments demonstrate that TALE is able to produce
useful and meaningful results in both cases. In addition, our
experimental evaluation shows that TALE is very efficient for
large queries, and that the execution time grows gracefully
with increasing number of graphs in the database. Through
comparisons with other existing tools, we also show that TALE
is significantly faster than existing methods.

The main contributions of this paper are as follows:
(1) We propose TALE – a general tool for approximate

subgraph matching of large graph queries. TALE uses a novel
disk-based indexing method, which indexes the neighborhood
of each database node. It achieves high pruning power and its
size scales linearly with the database size. We introduce an in-
novative graph matching paradigm, which distinguishes nodes
by their importance in the graph structure, and accordingly
treats them differently in the matching process.

(2) By applying TALE to real applications, we show its
effectiveness, significant performance improvements over ex-
isting methods, and ability to gracefully handle large graph
queries and databases.

The remainder of this paper is organized as follows: Related
work is presented in Section II. Section III defines the prelim-
inary concepts. Section IV describes our indexing mechanism,
and Section V introduces the TALE algorithm. Experimental
results are presented in Section VI, and Section VII contains
our conclusions and directions for future work.

II. RELATED WORK

There is a long history of database research on methods for
querying graphs. However, most previous works have focused
on exact graph or subgraph matching, i.e. graph or subgraph
isomorphism. Subgraph isomorphism was proved to be NP-
complete in [5]. Ullmann [17] proposed a subgraph matching
algorithm based on a state space search method with back-
tracking. However, this algorithm is prohibitively expensive
for querying against database with a large number of graphs.
To reduce the search space, GraphGrep [13], GIndex [19] and
TreePi [22] index substructures of the database (paths, frequent
subgraphs and trees respectively) to filter out graphs that do
not match the query.

Several index-based methods for approximate subgraph
matching have also been proposed. However, most of these
techniques only apply to small graphs and allow limited
approximation. Grafil [20] and PIS [21] are both built on top
of the exact subgraph matching method GIndex. However,
neither method allows node insertion or deletion in their
match models. CDIndex [18] only applies to graphs with
limited sizes, as it exhaustedly enumerates and indexes all

the subgraphs in the database. GString [9] utilizes sequence
matching to answer graph queries, but it only applies to
applications in which the graphs contain a small number of
basic substructures. C-Tree [6], which employs an R-tree like
index structure, is a more general tool than the above methods.
In Section VI, we compare TALE with C-Tree. A recent
method [15], called SAGA, employs a flexible graph similarity
model. While SAGA is very efficient for small graph queries,
it is computationally expensive when applied to large graphs.
In contrast, TALE focuses on approximate matching for large
graph queries. In the extended version of this paper [16], we
also compare TALE with SAGA.

III. PRELIMINARIES

A graph G is denoted as (V,E), where V is the set of
nodes and E ⊆ V × V is the set of (directed or undirected)
edges. Nodes and edges can have labels specified by mappings
φ : V → Σv and ψ : E → Σe respectively, where Σv is the
set of node labels and Σe is the set of edge labels. In order to
uniquely identify a node, we assign an unique id to each node
in a graph. We also impose an order on the ids. Our indexing
method and matching algorithm support both directed and
undirected graphs with labeled nodes and/or labeled edges. For
ease of presentation, we present our method using undirected
graphs with labeled nodes. Adaptation of our method to other
graph types is fairly straightforward, and is omitted in the
interest of space.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. An
exact graph match (graph isomorphism) is a bijection mapping
function λ : V1 ↔ V2, in which for every v ∈ V1, φ(v) =
φ(λv), and (u, v) ∈ E1 if and only if (λu, λv) ∈ E2. An
exact subgraph match (subgraph isomorphism) from G1 (the
query) to G2 (the target) is defined as ∃G′

2 ⊆ G2, and G′
2 is

an exact graph match for G1.
Approximate graph matching allows node mismatches (i.e.

φ(v) �= φ(λv)), and node/edge insertions and deletions. We
define an approximate graph match as a bijection mapping
λ : V ′

1 ↔ V ′
2 , where V ′

1 ⊆ V1 and V ′
2 ⊆ V2. Similarly, an

approximate subgraph match from G1 (the query) to G2 (the
target) is defined as ∃G′

2 ⊆ G2, and G′
2 is an approximate

graph match for G1.
An approximate subgraph matching tool often returns a

large number of matches for a query. Often the user is only
interested in the top-K results. To return the top-K results,
TALE has to sort the matches based on their similarities to
the query. Several graph similarity or distance models have
been proposed, e.g. [2], [15]. Each model is meaningful for
some applications, but there is no “universal” model that fits all
applications. We do not want to limit the generality of TALE
by tailoring it to a particular similarity model. Instead, we let
the users customize the similarity method that best models
their application, thereby allowing TALE to serve as flexible
graph matching tool that can be used in a variety of graph
matching applications. Section VI shows examples of how this
similarity model can be customized in practice.



IV. THE NH-INDEX

In this section, we introduce the novel indexing technique,
Neighborhood Index (NH-Index).

A. Indexing Unit

The first question that arises with a graph indexing method
is the graph entities, e.g. nodes, edges, subgraphs, etc., that
should be indexed. The NH-Index is used by the matching
algorithm to match the important nodes in the query graph.
These initial matches for the important nodes are then ex-
tended to produce the final matching results. A naive indexing
method is to index all the nodes in the database. This method
has the benefit that the index size grows linearly with the
number of nodes in the database, but suffers from low pruning
power, as each query node can have many false positive
matches (matches that cannot be extended later). Our NH-
Index size is linear in the number of nodes in the database
and also has a high pruning power. NH-Index achieves this by
incorporating neighborhood information into the naive node
indexing method. When matching a query node, instead of
looking at the node in isolation, NH-Index also considers its
neighborhood. A database node matches the query node, only
if the two nodes match and their neighborhoods also match.
Using this technique, a large fraction of false positives can be
eliminated.

A neighborhood is defined as the induced subgraph of
a node and its neighbors (adjacent nodes). There are three
main properties that characterize the neighborhood of a node:
the number of neighbors, how the neighbors connect to each
other, and the labels of the actual neighbors. The number of
neighbors is simply the degree of the node. To quantify the
“connectedness” amongst the neighbors, we define neighbor
connection as the number of edges between the neighbors.
For example, the neighbor connection of the black node in
Figure 1 is 5.

To capture the neighbors of a node, a naive method is to
simply enumerate the labels of the neighbors. However, this
naive approach results in variable-length index entries as well
as large index size (in the worst case of a clique, the storage
cost is O(n2), where n is the number of nodes in the database).
An alternative to the naive approach is to use a compact bit
array to capture the neighbors set. In the simple case when
the total number of different labels in the problem domain is
small (i.e. |Σv| is small), we can use a deterministic bit array
to store the neighbors. The size of the bit array is equal to
|Σv|, and each bit in the array indicates whether a neighbor
with a specific label exists (set to 1) or not (set to 0). We call
this bit array neighbor array. When |Σv| is a large number,
using a deterministic bit array is very expensive. To handle this
situation, we employ the Bloom filter approach [1]. We fix the
size of the bit array to be Sbit, where Sbit is a user-controllable
parameter. A hash function is utilized to map a node label to
a bit array position. To improve precision, multiple bit arrays
and hash functions can be used to characterize the neighbors
of a node. For simplicity, we only use one bit array to store
the neighbor information in this work.

Fig. 1. An example graph

In summary, the indexing unit of the NH-Index contains
the following information: (label, degree, nbConnection, nbAr-
ray), where nbConnection is the neighbor connection of the
node, and nbArray is the neighbor array.

B. Matching a Query Node

In the previous section, we discussed the indexing unit of
the NH-Index. Next, given a query node, we examine how
our method finds the matching database nodes. For ease of
presentation, we first investigate the matching conditions for
exact subgraph matching, and then extend it to approximate
subgraph matching.

For exact subgraph matching, in order to match a query node
to a database node, the two nodes must have the same label.
The degree of the query node should be no more than that
of the database node. The same condition holds for neighbor
connections. Besides, the neighbors of the query node should
have corresponding matching nodes in the neighborhood of
the database node.

For approximate matching, we want to tolerate some misses
in the match. We introduce a single user-defined parameter
ρ, which is used to control the degree of approximation.
Intuitively, ρ is the percentage of neighbors of a query node
that can have no corresponding matches in the neighborhood
of a database node. In other words, nbmiss = (ρ×Nq.degree)
neighbors of the query node can be missing in the match to a
database node. If nbmiss nodes are allowed to be missing, then
at most nbcmiss = nbmiss × (nbmiss − 1)/2 + (Nq.degree−
nbmiss) × nbmiss neighbor connections are allowed to be
missing in the match, i.e. in the worst case, the nbmiss nodes
all connect to each other, and also connect to all of the
remaining (Nq.degree− nbmiss) nodes.

Note that we also support node mismatches (nodes with dif-
ferent labels are matched) in TALE. For ease of presentation,
we delay the discussion of node mismatches to Section IV-E,
and for now assume that matching nodes are required to have
the same label.

Formally, the conditions for matching a query node to an
NH-index entry for approximate subgraph matching is:

Ndb.label = Nq.label (IV.1)

Ndb.degree ≥ Nq.degree− nbmiss (IV.2)

Sbit∑
i=1

Miss(Ndb.nbArray[i], Nq.nbArray[i]) ≤ nbmiss

(IV.3)

Ndb.nbConnection ≥ Nq.nbConnection− nbcmiss (IV.4)
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The Miss function in Equation IV.3 is defined as follows:

Miss(x, y) =

{
1 if x = 0 and y = 1
0 otherwise

In fact, exact subgraph matching can be viewed as a special
case of approximate subgraph matching when ρ = 0.

Note that the conditions expressed in Equations IV.1 to IV.4
can result in producing some false positives. Our index serves
as a filtering mechanism to prune the search space. These
matches are then refined in the matching algorithm (Sec-
tion V).

1) Node Match Quality: Given a query node, there can
be more than one database node that satisfies the conditions
specified in Equations IV.1 to IV.4. Each of these matches
can have a different match quality. Therefore, we need to
measure the quality of the node matches. This quality metric
will then be used at a later step (see Section V-B) following
the index probe. In this section, we describe the match quality
computation.

Let ñbmiss be the actual number of missing neighbors in
the node match, and ñbcmiss be the actual number of missing
neighbor connections. Then the fraction of missing neighbors
of the query node can be defined as fnb = ñbmiss

Nq.degree . And
the fraction of missing neighbor connections can be defined
as fnbc = ñbcmiss

Nq.nbConnection . Then, we define the quality of a
node match, w, as:

w =

{
2 − fnbc if ñbmiss = 0
2 − (fnb + fnbc

ñbmiss
) otherwise

(IV.5)

Note that fnbc is correlated with fnb, as more missing neigh-
bors is likely to result in more missing neighbor connections
in the match. Therefore, we amortize fnbc by the number
of missing neighbors ñbmiss in Equation IV.5. The value of
(fnb + fnbc

ñbmiss
) falls between 0 and 2. We subtract this value

from 2, so that higher w value means a better node match.

C. Index Structure

Next, we consider the index structure to implement the NH-
index. Rather than designing a new index structure, which
makes adoption and implementation hard, it is desirable to
consider using existing index structures that can implement the
NH-index efficiently. A suitable index structure needs to sup-
port the conditions specified in Equations IV.1 through IV.4.
We propose a simple hybrid index structure (see Figure 2) for
the NH-Index.

This hybrid index structure has two levels. The highest
level of the index structure is a B+-tree index on node label,
degree and neighbor connection. This part of the index is
used for fast evaluation of the equality search on node labels
(Equation IV.1), range search on node degrees (Equation IV.2)
and neighbor connections (Equation IV.4). Each leaf entry in
the B+-tree index points to a second-level index. This second-
level index has two components. The first is a list of database
node ids that are represented by the B+-tree leaf index entry.
(Recall from Section III that every database graph node has
a unique node id.) These nodes have the same unique label,
degree and neighbor connection. The second component is a
bitmap index for the neighbor arrays of these database nodes.
Each node has one corresponding bit array in the bitmap.
Figure 2 shows an example bitmap index for a B+-tree leaf
entry that is mapped to six distinct database nodes with the
same label, degree and neighbor connection. The bitmap index
is used to expedite the evaluation of Equation IV.3 using
Algorithm 1 (discussed in detail below).

Note that our hybrid index structure is easily implemented
in existing relational systems. The second level indices can
be implemented simply as a relation with two attributes: one
that stores the list of database nodes, and the other that
stores a bitmap (using an extensible data type). The first level
index is simply a B+-tree built on this table. This simple
implementation is robust and allows us to easily realize the
NH-Index.

D. Index Probing

Given a query node, we first utilize the label, degree and
neighbor connection information to probe the B+-Tree index.
Then, we obtain a list of bitmaps that must be further examined
using the conditions specified in Equation IV.3. An efficient
algorithm for this evaluation is shown in Algorithm 1. This
algorithm contains two steps. The first step (line 1 to 17)
counts the number of missing neighbors of the query node
in the match to each database node in a bitmap. The second
step (line 18 to 30) prunes all the database nodes with the
number of missing neighbors higher than the user threshold.
We discuss these two steps in detail below.

If a position in the query neighbor array is set to 1,
but the corresponding position in a database neighbor array
is 0, we count it as one miss. Step 1 of Algorithm 1
simulates the binary addition operation to count the total
number of misses. We keep a counter of countSize+ 1 bits
(countSize = 	log2(nbmiss)
+ 1) for each database node to
record the number of misses. These counters are stored in the
countSize + 1 bit vectors Count[0] to Count[countSize],
i.e. vector Count[0] stores the bit position 0 for all the
counters, and so on. The algorithm scans through the query
neighbor array from the lowest bit (position 0) to the highest
bit (position Sbit−1). If the current bit is 1, then the algorithm
negates the bits in the corresponding column of the bitmap
index and adds all the bit values to the counters of the database
nodes. To avoid overflow, the highest bit Count[countSize]
for a database node is set to 1 when the number of misses



Algorithm 1 Bitmap Probe for Approximate Subgraph
Matching (Nq, Bitmap, ρ)
Input: Nq is the query node, Bitmap is the bitmap index to be

probed, assuming that there are n nodes in the bitmap index
and the size of neighbor array is Sbit, ρ is the percentage of
neighbors of a query node that can be missing in the match to
a database node

Output: Resultle is the bit vector indicating which nodes satisfy
the query

1: // [Step 1]: count the number of missing neighbors
2: nbmiss = �ρ × Nq.degree� // the threshold for the number of

missing neighbors
3: countSize = �log2(nbmiss)� + 1
4: for i from 0 to countSize do
5: Count[i] = (0, 0, ..., 0) // Count[i] is a bit vector of size n
6: end for
7: for j from 0 to Sbit − 1 do
8: if Nq.nbArray[j] = 1 then
9: Carries = NOT Bitmap.Bj

10: for k from 0 to countSize − 1 do
11: Temp = Count[k] AND Carries
12: Count[k] = Count[k] XOR Carries
13: Carries = Temp
14: end for
15: Count[countSize] = Count[countSize] OR Carries
16: end if
17: end for
18: // [Step 2]: only return nodes with no more than nbmiss missing

neighbors
19: Resultlt = (0, 0, ..., 0) // Resultlt is a bit vector of size n
20: Resulteq = (1, 1, ..., 1) // Resulteq is a bit vector of size n
21: for k from countSize to 0 do
22: if bit k of nbmiss’s binary format is 1 then
23: Resultlt = Resultlt OR (Resulteq AND (NOT

Count[k]))
24: Resulteq = Resulteq AND Count[k]
25: else
26: Resulteq = Resulteq AND (NOT Count[k])
27: end if
28: end for
29: Resultle = Resultlt OR Resulteq

30: return Resultle

exceeds countSize bits. An example of the first step is shown
in Step 1 of Figure 3.

The second step of Algorithm 1 prunes all the database
nodes with more than nbmiss misses. We use two bit vectors
Resulteq and Resultlt to record the nodes with nbmiss misses
and less than nbmiss misses, respectively. As the algorithm
scans the binary format of nbmiss from the highest bit (po-
sition countSize) to the lowest bit (position 0), it updates
Resulteq and Resultlt. Finally, the bitwise OR of the two
vectors gives us the right answer. Each position in the result
vector indicates whether the corresponding database node is
in the query result or not. Figure 3 also shows an example of
this step.

Next, we analyze the complexity of Algorithm 1. This
algorithm takes O(Sbit × log(ρ × d)) bitwise operations in
step 1, where d is the degree of the query node. And step 2
takes O(Sbit) bitwise operations. Therefore, the complexity of
Algorithm 1 is O(Sbit × log(ρ× d)) bitwise operations on bit
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Fig. 3. Example demonstrating Algorithm 1

vectors. Usually, ρ× d is very small value, thus log(ρ× d) is
even smaller, and often negligible.

We have also compared Algorithm 1 with a naive bitmap in-
dex probing method, which scans through every neighbor array
in the bitmap index, and decides whether the neighbor array
satisfies the condition specified in Equation IV.3. We set up
a simulation to test the efficiency of Algorithm 1 against this
naive method. We randomly generated 12 bitmap indexes with
increasing sizes. The smallest bitmap index contains neighbor
arrays for 16 nodes, while the largest one contains neighbor
arrays for 32768 nodes. Each neighbor array in the bitmap has
32 bits. We use 50 randomly generated query neighbor arrays
to probe these bitmap indexes. Algorithm 1 shows significant
performance advantage over the naive method – the speedup
ranges from 2X for the smallest index to more than 12X for
the largest index.

E. Extension for Node Mismatches

In the above indexing method, TALE requires two matching
nodes to have the same label. However, real applications often
need to allow matchings between nodes with different labels.
We adopt the node mismatch model introduced in [15], which
implicitly groups nodes based on a specific notion of similarity.
In this model, the grouping of nodes is defined based on the
application domain, and two nodes are allowed to match only
if they belong to the same group. For example, if a node
represents a gene, then its group membership is defined by
the orthologous group that it belongs to (orthologous groups
are organized based on similar gene functionalities), and two
nodes match if they belong to the same orthologous group.
To accommodate this model, we extend the basic indexing
approach by replacing the node labels with their corresponding
group labels and hashing the group labels for the bit arrays.
The remaining indexing method remains unchanged. In Sec-
tion VI, we show how TALE can be applied to real applications
using this node mismatch model.

Other extensions of the indexing method to handle more
general graphs, such as directed graphs and graphs with
labeled edges, can be found in the extended version of this
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paper [16].

V. THE MATCHING ALGORITHM

In this section, we introduce the approximate subgraph
matching algorithm. We first start with an overview of this
algorithm in Section V-A, and then describe the algorithm in
detail in Sections V-B and V-C.

A. Algorithm Overview

Our approximate subgraph matching algorithm is based on
the following two observations.

Observation 1: Some nodes in a graph play more impor-
tance roles in the graph structure than others. As shown in
Figure 1, some nodes (e.g. the black node) connect to many
other nodes. If these nodes are absent, then the graph structure
quickly gets fragmented. In contrast, some nodes (e.g. the
gray node) sit on the periphery of the graph and only connect
to few other nodes. The overall graph structure will not be
dramatically affected by removing these nodes. There are
various ways of measuring the importance of a node in a graph.
For simplicity, we use the degree centrality measure in this
work. In this measure, nodes with high degrees are considered
more important than nodes with low degrees. In Section VI-D,
we will evaluate the effectiveness of this importance measure.
Note that the definition of “importance” is flexible in TALE
and customizable for specific application needs. TALE can be
easily extended to use other measures of node importance,
such as closeness, betweenness, and eigenvector centralities.

Observation 2: A good approximate match should be more
tolerant towards missing unimportant nodes in the query than
missing important nodes. In other words, most of the important
nodes in the query should be present in the match, while
missing unimportant nodes is more tolerated. In addition, the
number of matched important nodes, and the qualities of
these node matches can be used to estimate the quality of
an approximate subgraph match.

Based on these two observations, we introduce a new
approximate subgraph matching algorithm. The overview of
this algorithm is as follows: First, the algorithm selects a
number of important nodes from the query based on the

Algorithm 2 GrowMatch (Gq, Gdb, Mimp)
Input: Gq is the query graph, Gdb is the database graph, Mimp

contains the matches for the important nodes in Gq

Output: M contains the node matches for the resulting graph match
1: put all node matches from Mimp to a priority queue Q sorted

by their qualities
2: while Q is not empty do
3: pop up the best node match (Nq , Ndb) from Q
4: put (Nq , Ndb) into M
5: ExamineNodesNearBy(Gq , Gdb, Nq , Ndb, M , Q) // finding

new matches for nodes nearby Nq

6: end while
7: return M

specified importance measure (degree centrality in this work),
and then probes the NH-Index to find matching nodes for these
important query nodes. These matching node pairs serve as
anchor points for producing graph matches. In the second step,
for each matching database graph, the algorithm extends the
graph match from the anchor points by progressively adding
satisfiable nearby nodes of already matched nodes. The entire
matching process is outlined in Figure 4.

B. Step 1: Match the Important Nodes

In this step, the algorithm selects a number of important
nodes from the query and probes the NH-Index to match these
important nodes.

The algorithm first needs to decide how many nodes count
as important nodes. We introduce a parameter Pimp, defined
as the fraction of important nodes in the query. Given Pimp,
we sort the nodes in the query by their importance (degree
centrality in this work) and select the top Pimp percent as the
important nodes. (In the extended version of this paper [16],
we show how to choose the Pimp value based on graph
properties of specific applications.)

After selecting the important nodes, the algorithm probes the
NH-Index for each important node as discussed in Section IV-
D. After the index probe, we obtain a list of database graphs
that have matches for some or all of the important nodes in
the query. A match score is also calculated for each matching
node pair using Equation IV.5. In the results produced by the
index probes, a single important query node can be mapped
to multiple database nodes and vice versa. Since the main
purpose of this first step is to find the anchor points that can
be expanded in the next step, we need to find one-to-one node
mappings between the query and database nodes. For this part,
we use a maximum weighted bipartite graph matching algo-
rithm (using node match scores as weights) from the LEDA-R
3.2 library (http://www.algorithmic-solutions.
com/index.htm).

C. Step 2: Extend the Match

Step 1 of the matching algorithm produces a list of candidate
database graphs. For each candidate graph, Step 2 of the
algorithm utilizes the node matches produced by Step 1 as
anchor points to match the remaining nodes in the database
and query graphs, and produces the final graph match.



Algorithm 3 ExamineNodesNearBy (Gq, Gdb, Nq, Ndb, Mc,
Qc)
Input: Gq is the query graph, Gdb is the database graph, Nq is a

node in Gq , Ndb is the node in Gdb matched to Nq , Mc contains
all the current node matches found so far, Qc contains all the
candidate node matches to be examined

1: NB1q = immediate neighbors of Nq that have no matches in
Mc

2: NB2q = nodes two hops away from Nq that have no matches
in Mc

3: NB1db = immediate neighbors of Ndb that have no matches in
either Mc or Qc

4: NB2db = nodes two hops away from Ndb that have no matches
in either Mc or Qc

5: MatchNodes(Gq , Gdb, NB1q , NB1db, Mc, Qc)
6: MatchNodes(Gq , Gdb, NB1q , NB2db, Mc, Qc)
7: MatchNodes(Gq , Gdb, NB2q , NB1db, Mc, Qc)

The overall idea of this step is as follows. For each node
that is already matched, we try to match its “nearby” nodes (as
described below these includes not just the adjacent nodes, but
also nodes that are two hops away). We perform this extension
progressively until no more nodes can be added to the match.
The detailed algorithm is shown in Algorithm 2, 3 and 4.

Algorithm 2 is the main procedure for step 2. It first puts
all the important node matches (the anchor points) into a
priority queue sorted by the qualities of the node matches (cf.
Section IV-B.1). In each iteration of the loop, we pop up the
best node match (with the highest quality) from the queue and
put it into the final graph match. In addition, we examine the
nearby nodes of the query node, as well as the nearby nodes of
the database node, to see whether any of them can be matched.
If so, we add these new node matches to the priority queue.
This process ends when the priority queue is empty.

Algorithm 3 implements the ExamineNodesNearBy func-
tion called by Algorithm 2. Based on a pair of already matched
nodes, this function tries to match their nearby nodes. In order
to allow more flexibility in the approximate matching, we do
not limit the matching extensions to just adjacent nodes of
the query node and the database node. Instead, this algorithm
examines nodes at most two-hops away from the query node
and the database node. Note that this algorithm is generic.
It can be easily extended to match nodes more than two-
hops away to allow more approximation (at the expense of
an increased computational cost).

Algorithm 4 shows the details of the MatchNodes function
called by Algorithm 3. For each node from the given set of
query nodes, this algorithm finds the best matching node from
the set of database nodes. If the new node match does not
conflict with any existing ones in the priority queue, it is
simply put into the priority queue. However, if this node match
is better than an existing match in the queue, the existing one
is replaced with the new one.

VI. EVALUATION

In this section, we apply TALE to two real biological
applications, and present results evaluating TALE with three

Algorithm 4 MatchNodes(Gq , Gdb, Sq, Sdb, Mc, Qc)
Input: Gq is the query graph, Gdb is the database graph, Sq is a set

of nodes in Gq , Sdb is a set of nodes in Gdb, Mc contains all
the current matches found so far, Qc contains all the candidate
matches to be examined

1: for every node Nq in Sq do
2: Ndb=the best mapping of Nq in Sdb

3: if Ndb=null then
4: continue
5: end if
6: if Nq has no matches in Qc then
7: put (Nq , Ndb) into Qc

8: remove Ndb from Sdb

9: else if (Nq , Ndb) is a better node match then
10: remove the existing match of Nq from Qc

11: put (Nq , Ndb) into Qc

12: remove Ndb from Sdb

13: end if
14: end for

measures: effectiveness (whether the results produced by the
tool are useful and meaningful in real life applications),
efficiency and scalability.

Note that while the applications discussed in this paper
are from life sciences, TALE can be applied to any area in
which there is a need for approximate subgraph matching.
Other such areas include comparing RDF graphs in semantic
web applications, and comparing parse trees produced by
natural language parsers for literature mining. We have chosen
to focus on life sciences applications since we have actual
collaborators who have ready applications for our tool.

TALE is implemented in C++ on top of PostgreSQL
(http://www.postgresql.org). The execution times
reported in this section correspond to the running times of
this C++ program including the DBMS access times. All
experiments were run on a 2.8GHz Pentium 4 Fedora Core
2 machine, with 2GB memory, and a 250GB SATA disk. We
use PostgreSQL version 8.1.3 and set the buffer pool size to
512MB.

A. Experimental Datasets

BIND Dataset: We use the BIND [3] dataset (version
May 25, 2006) to demonstrate the application of TALE for
comparing Protein Interaction Networks (PINs). A PIN is
a large graph, in which nodes represent proteins and edges
indicate protein-protein interactions. Comparing PINs of dif-
ferent species allows a biologist to discover the evolutionary
conserved functional units across species. However, due to
the high error rate of detection methods, PINs are noisy
in nature [14]. Therefore, approximate subgraph matching is
useful for comparing PINs.

ASTRAL Dataset: To demonstrate the potential application
of TALE for Protein Structure Matching, we use the AS-
TRAL [8] dataset (version 1.71). This dataset contains the 3D
structures of protein domains. A domain is an independent,
self-stabilizing unit of a protein, usually pertinent to the
function of the protein they belong to. In biology, structure
similarity is often a good indicator of function similarity. 3D



TABLE I

PINS OF HUMAN, MOUSE AND RAT

# nodes # edges
human 8470 11260
mouse 2991 3347

rat 830 942

structures can be translated into contact graphs, and structure
matching can be achieved by approximate subgraph matching
on the corresponding contact graphs. In a contact graph, nodes
represent amino acids (since there are 20 different kinds of
amino acids, there are 20 distinct node labels) and edges
indicate that the corresponding amino acids physically interact
with each other. This physical interaction is usually decided
by a threshold of the contact distance. In our experiment, we
used the widely used 7Å threshold [7] to convert each domain
3D structure into a contact graph.

TALE requires the setting of the following three parameters:
the neighbor array size Sbit in the NH-Index, the approxi-
mation ratio ρ, and the fraction of important nodes Pimp in
a query graph. In the extended version of this paper [16],
we demonstrate how to choose the values of these parameters
for the two biological applications. For the results presented
here, the parameter settings are: Sbit = 96, ρ = 25% and
Pimp = 15% for the BIND dataset, and Sbit = 32, ρ = 25%
and Pimp = 25% for the ASTRAL dataset.

We also evaluated TALE on the biological pathways from
the KEGG database [10]. The results, which can be found in
the extended version of this paper [16], are similar to the other
two datasets and is omitted in the interest of space.

B. Effectiveness Evaluation

In this section, we present results evaluating the effective-
ness of TALE. We also compare TALE to C-Tree [6] and the
PINs alignment algorithm Graemlin [4].

1) Protein Interaction Networks Comparison: Graph
matching techniques are used on PINs to find conserved
components shared between the query network and each
network in the database. The PIN for a well studied species
is usually a large graph with hundreds to thousands of nodes
and edges. C-Tree [6] is not applicable for comparing PINs as
the implementation does not allow node mismatches (nodes
with different labels to be matched), which is a requirement
for this application. On the other hand, TALE handles node
mismatches by utilizing the group labels produced by existing
protein clustering tools (see [16] for details).

For comparing PINs, the tools most closely related to TALE
are NetworkBlast [12], MaWISh [11] and Graemlin [4]. Since
these tools largely deal with pairwise comparison, we only
focus on pairwise PIN comparison in this experiment. In [4],
the authors showed that Graemlin is better at identifying con-
served functional modules than the other methods. Therefore,
we only compare TALE with Graemlin.

We choose the PINs of three well studied mammals: human,
mouse and rat for this experiment. The statistics for these three
networks are described in Table I.

TABLE II

EFFECTIVENESS FOR COMPARING PINS

# KEGGs KEGG time
hit coverage (sec)

rat vs. human
Graemlin 0 NA 910.0

TALE 6 3.2% 0.3
mouse vs. human

Graemlin 18 5.0% 16305.5
TALE 42 13.6% 0.8

We use both TALE and Graemlin (using code download
from http://graemlin.stanford.edu/) to query the
rat and the mouse PINs against the human PIN. We compare
the two methods using the effectiveness measures: the number
of KEGGs hit1 and the average KEGG coverage2 as proposed
in [4]. As shown in Table II, TALE achieves significant larger
number of KEGGs hit and better average KEGG coverage than
Graemlin. Most noticeable is the big difference in running
time. TALE only takes about 1 second for the two queries
while Graemlin takes 4.8 hours. In addition, TALE only takes
about 1 second to build the index on the human PIN.

2) Protein Structure Matching: In this experiment, we eval-
uate the effectiveness of TALE for protein structure matching
using the ASTRAL dataset.

This application generally does not require node mis-
matches, therefore we can compare TALE with C-Tree.
However, the C-Tree implementation that we got from the
authors is memory-based. In other words, the whole index
needs to reside in memory for query processing. Naturally,
as the database size increases, the index will soon grow out
of memory. For example, C-Tree cannot build an index on
the entire ASTRAL dataset (which has 75626 domains). In
contrast, NH-Index is a disk-based index technique and is not
limited by the memory size. As we will show in Section VI-
C.2, TALE can easily handle the entire ASTRAL dataset, and
our disk-based index structure scales nicely with increasing
database sizes. For a fair comparison, we employ the similarity
model used by C-Tree [6] to rank the matching results.

ASTRAL contains 75626 domains, which are classified into
7275 families. Domains in each family present significant
structural similarity. This provides us with a way of evaluating
the effectiveness of TALE: large fraction of the top matching
results are expected to belong to the same family of the query
domain.

We test TALE and C-Tree on a subset of ASTRAL, so that
C-Tree can hold the index in memory. The dataset is created
as follows: We randomly choose 1300 families (with more
than 10 domains in each family), and then randomly choose
10 domains from each family. The average number of nodes
and edges for each graph are 186.6 and 734.2, respectively.

We randomly choose 20 queries (with 346.4 nodes and
971.6 edges per graph on average) from the 13000 domains.

1The number of KEGGs hit is the number of pathways in the KEGG
database [10] aligned between 2 species. A KEGG pathway is considered
as a hit if at least 3 proteins in the pathway are aligned to their counterparts
in the pathway of the other species.

2KEGG coverage is the fraction of proteins aligned within a pathway.



pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1

recall
0 0.2 0.4 0.6 0.8 1

TALE
C−Tree

Fig. 5. ROC curves using the ASTRAL dataset

We gradually increase the number of results returned by TALE
and C-Tree, and measure the mean recall and mean precision
for both methods. The recall and precision ROC curves are
shown in Figure 5. The precision for both methods stays
very high until the recall reaches round 0.6. This is because
both methods return relevant results as their top results.
However, as the recall further increases, the precision drops
more steeply. After the recall reaches around 0.8, returning
more results will not improve the recall any more. This is
because the classification system in ASTRAL is not purely
based on structure similarity, but also on extensive domain
knowledge. No method based on pure structural similarity is
likely to perfectly match this classification system. However,
TALE could potentially be used for classifying novel family
members in combination with the domain knowledge provided
by experts.

Although TALE and C-Tree are very comparable in their
effectiveness for this dataset, TALE is faster than C-Tree.
The average running time for the 20 queries is 34.8 seconds
using TALE, but 61.9 seconds using C-Tree. TALE is almost
2 times faster than C-Tree (even though it is a disk-based
implementation and is going through PostgreSQL).

C. Efficiency and Scalability Evaluation

1) Experiment on BIND Dataset: In this experiment, we
evaluate the efficiency and scalability of TALE on the BIND
dataset. BIND has PINs for 757 species, but most PINs are
incomplete. We choose the largest 40 PINs from BIND. The
largest graph contains 8470 nodes and 11260 edges. The
smallest of these 40 PINs contains 45 nodes and 105 edges. On
average, each graph has 940.1 nodes and 1743.6 edges. The
characteristic of this data is that it contains large-sized graphs.
To measure the scalability of TALE, we formed 4 datasets
D1 to D4 with increasing sizes 3. The statistics of the four

3The 4 datasets are formed as follows. We first divide the 40 PINs into 4
balanced groups each with 10 PINs and roughly same total number of nodes.
We randomly select one group as D1, randomly add another group to D1 to
form D2, then randomly add one of the remaining groups to D2 to form D3,
finally D4 contains all the 4 groups.

TABLE III

FOUR BIND SUB-DATASETS FOR THE SCALABILITY EXPERIMENT

avg avg index index
#graphs #nodes #edges size time

D1 10 939.1 1093.2 1.4MB 13.2s
D2 20 938.5 1691.9 2.9MB 31.1s
D3 30 939.5 1920.7 4.5MB 50.4s
D4 40 940.1 1743.6 5.7MB 62.7s
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Fig. 6. Scalability Experiment using the BIND dataset

datasets are summarized in Table III. The index sizes and the
index construction times are also shown in this table. As the
database size increases, the index size grows at a near-linear
rate and the index construction time increases steadily.

We choose the 10 graphs in dataset D1 as the queries.
For this experiment, we do not restrict the number of results
returned by each query. The execution time for the 10 queries
on the 4 datasets is shown in Figure 6. Even for the largest
query with 3059 nodes and 4850 edges on the largest D4
dataset, the query executes in about 0.7 seconds. The execution
time grows as the size of the database increases. For most
queries, the growth ratio shows near-linear trend. Note that
query execution time is not just influenced by the query and
database sizes, but also by the result cardinality. In Figure 6,
Q2, Q3 and Q4 increase in the query size, but the execution
time increases from Q2 to Q3 while decreases from Q3 to
Q4 for D2, D3 and D4 datasets. The reason is that Q3 has
more database matches than Q2 and Q4. (Recall that in this
experiment, we do not restrict the number of results returned
by each query.) For Q3, there is a jump from D1 to D2,
because more matching graphs are found in D2. But the
number of matches remain roughly the same from D2 to D4
(and so does the execution time). Similar explanations apply
to other queries in this figure.

2) Experiment on ASTRAL Dataset: In this experiment,
we evaluate the efficiency and scalability of TALE on the
ASTRAL datasets with increasing sizes. The smallest dataset
contains 200 graphs, while the largest one contains all the
75626 graphs in ASTRAL. As shown in Figure 7 and Figure 8,
the index construction time and index size show steady growth
with increasing database size.

We randomly selected 20 queries (153.1 nodes and 592.0
edges per graph on average) from the smallest dataset, and
ran it on the increasing sized databases. For each query, we
only retain the top 20 results. The average execution time for
the 20 queries is shown in Figure 9. The running time scales
nicely with the database size.

D. Discussion and Summary

We note that TALE is a heuristic algorithm. It does not
guarantee that it will find the best or all matches. However,
given that finding the best/all matches is NP-hard [2] and
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infeasible in practice, heuristics are inevitable. For most real
graphs, our heuristics achieve high accuracy compared with
existing tools, as shown in our experiments.

In this work, we have used degree centrality to measure the
importance of nodes. To show the effectiveness of this mea-
sure, we compare TALE to a variant called TALE-Random,
where the “important” nodes are simply a randomly selected
subset of the nodes. We ran the BIND mouse vs human test
(Table II, Row 3) using TALE-Random. We compare the
number of matching nodes, the number of matching edges,
the number of KEGGs hit and the average KEGG coverage
for the two methods. The results are 106, 61, 42, 13.6% for
TALE and 85, 24, 8, 5.8% for TALE-Random. This test shows
the effectiveness of this node importance measure for this
application.

To summarize the experimental section, our extensive em-
pirical evaluation demonstrates the effectiveness, efficiency
and scalability of TALE. We have compared TALE to two
existing tools, C-Tree and Graemlin. TALE is a flexible tool
and the only tool that can easily be applied across the two
applications considered in our evaluation. Furthermore, TALE
produces useful and meaningful results for both applications,
and is also significantly faster than these existing tools. Our
results also show that TALE is scalable for large queries and
large databases.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented TALE – an approximate
subgraph matching tool for matching graph queries with a
large number of nodes and edges. TALE employs a novel
indexing technique, which achieves a high pruning power and
scales linearly with the database size. This index structure can
be easily implemented in existing relational systems. The inno-
vative matching algorithm used by TALE distinguishes nodes
by their importance to the graph structure. This algorithm first
matches the important nodes in the query, and then extends
them to produce larger graph matches. TALE is a general tool
for approximate subgraph matching queries, and can be easily
customized to meet the requirement of different applications.
Our empirical evaluations demonstrate the improved effective-
ness and efficiency of TALE over existing methods. As part of
future work, we plan on applying TALE to other applications,
such as social networks and RDF graph datasets, to further
evaluate the generality of TALE.
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