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Abstract—A large scale network of social interactions, such as
mentions in Twitter, can often be modeled as a “dynamic inter-
action graph” in which new interactions (edges) are continually
added over time. Existing systems for extracting timely insights
from such graphs are based on either a cumulative “snapshot”
model or a “sliding window” model. The former model does
not sufficiently emphasize recent interactions. The latter model
abruptly forgets past interactions, leading to discontinuities in
which, e.g., the graph analysis completely ignores historically
important influencers who have temporarily gone dormant. We
introduce TIDE, a distributed system for analyzing dynamic
graphs that employs a new “probabilistic edge decay” (PED)
model. In this model, the graph analysis algorithm of interest
is applied at each time step to one or more graphs obtained
as samples from the current “snapshot” graph that comprises all
interactions that have occurred so far. The probability that a given
edge of the snapshot graph is included in a sample decays over
time according to a user specified decay function. The PED model
allows controlled trade-offs between recency and continuity, and
allows existing analysis algorithms for static graphs to be applied
to dynamic graphs essentially without change. For the important
class of exponential decay functions, we provide efficient methods
that leverage past samples to incrementally generate new samples
as time advances. We also exploit the large degree of overlap
between samples to reduce memory consumption from O(N)
to O(logN) when maintaining N sample graphs. Finally, we
provide bulk-execution methods for applying graph algorithms
to multiple sample graphs simultaneously without requiring any
changes to existing graph-processing APIs. Experiments on a real
Twitter dataset demonstrate the effectiveness and efficiency of our
TIDE prototype, which is built on top of the Spark distributed
computing framework.

I. INTRODUCTION

In a world of booming social networking services and
pervasive mobile devices, electronic records of social inter-
actions between people are being generated at ever-increasing
rates. A network of social interactions often can be modeled
as a “dynamic interaction graph” in which new interactions,
represented by edges, are continually added. Examples include
phone-call graphs generated by telecommunication service
providers, message graphs from social networking sites, and
mention-activity graphs formed by Twitter users mentioning
one another in their tweets. Dynamic interaction graphs are
very different from traditional social graphs, such as the friend-
ship graphs from social networking sites, in which the social
relationships evolve gradually. Real-life social interactions,
such as phone calls and tweets, happen much more rapidly. For
example, as of January 2014, 58 million tweets were generated
daily on Twitter. In essence, a dynamic interaction graph can
be viewed as a data stream of interactions.

Enterprises are analyzing streams of interactions for in-
sights relevant to real-time decision making. This poses a
significant challenge to algorithm design, because the over-
whelming majority of graph algorithms assume static graph
structures. As a result, most existing systems designed for
graph stream analysis [1], [2], [3] successively process a
sequence of static views, or “snapshots”, of a dynamic graph,
where a snapshot comprises all interactions seen so far. As
time advances, the result is updated incrementally, if possible,
or else by re-running the algorithm from scratch. We call this
simple model the “snapshot model”.

A key drawback of this approach is the ever-increasing
size of the snapshots. Graph analysis is usually much more
complex than maintenance of simple aggregates over a stream
of data, and the memory usage of virtually all available graph
algorithms increases with increasing graph size. As a result,
computation and memory resources quickly run out as interac-
tions are added to the dynamic graph. Another drawback of the
snapshot model is the recency problem: as time progresses, the
proportion of stale data in the snapshot becomes ever larger and
analysis results increasingly reflect out-of-date characteristics
of the dynamic graph.

One simple approach to reducing the size of the snapshots
and enforcing recency requirements is to use a “sliding-
window” model, where only recent interactions that happen
within a small fixed-size time window are considered in the
analysis. This simplistic cut-off approach completely forgets
historical interactions and thus loses the continuity of the
analytic results with time. Historical interactions may be less
relevant to today’s decision making, but do not completely
lack value, especially in the aggregate. The following example
demonstrates the drawbacks of the snapshot and sliding-
window models.

Example 1 (Influence Analysis). An advertising company is
analyzing the mention-activity graph from Twitter to identify
key influencers with respect to skiing equipment. A key influ-
encer is someone who has many interactions with other users
on skiing-related topics. Consider the following three users:

- Alice joined Twitter five years ago and has been regularly
and frequently interacting with other users on skiing-related
topics since then. She has been inactive for the last three weeks
because she is on a skiing trip in Europe.

- Bob joined Twitter two months ago, and since then has
had many interactions on skiing related topics.

- Carol also joined Twitter five years ago. She was ex-
tremely active on skiing topics for the first six months, but
then lost interest and has never tweeted about skiing again.

Figure 1 illustrates the frequency of interactions for the
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Fig. 1. Influence analysis example

three users over time. Intuitively, Alice is a steady influencer
who is temporarily dormant. Bob can be viewed as a rising
star. Although it is unknown whether Bob can maintain his
influence in the future (instead of becoming another Carol), as
of now, he should be considered a target for ads. Obviously,
Carol is not an influencer at present.

Under the snapshot model, there is no distinction between
recent interactions and old ones. Alice, correctly, is an in-
fluencer. Bob, incorrectly, is not an influencer because the
number of his interactions is relatively small compared to the
cumulative interaction counts of the old-timers. On the other
hand, the fact that Carol has had a huge number of interactions
incorrectly makes her an influencer, even though all of these
interactions are in the remote past (but perhaps she should
receive an ad just in case). By comparison, if we use a sliding-
window model with a one-month window length, Bob will be
an influencer, but Alice will not be considered as an influencer
at all. Carol will never receive an ad.

To address the above issue, we take an approach inspired
by the literature on sampling from data streams. Specifically,
we consider temporally biased sampling, as was proposed
for ordinary (non-graph) data streams in [4]. The general
idea is to sample data items according to a probability that
decreases over time, so that the sample contains a relatively
high proportion of recent data points. In our example, the gray
levels in Figure 1 illustrate temporally biased sampling rates
(darker shades correspond to higher inclusion probabilities).
Carol’s historical interactions will be significantly downgraded
in the influence analysis (but not completely ignored). Bob’s
recent interactions will be valued more. Although Alice is not
active right now, her consistent interactions throughout time
help her maintain influence.

Temporally biased sampling is especially appealing for
analyzing dynamic interaction graphs. First, sampling deals
gracefully with the increasing size of a dynamic graph. Second,
temporal biasing creates samples with more recent interactions
(recency) yet still keeps some old interactions to provide the
necessary context for the analysis (continuity). Finally, users
can apply any existing algorithm for static graphs as-is, avoid-
ing the need to design new, even more complex algorithms
that attempt to satisfy recency and continuity requirements.

Although the idea of temporally biased sampling is not
new, we are the first to apply it to the analysis of dynamic
graphs. In particular, as discussed in what follows, we refine
the generic temporally biased sampling approach by exploiting
graph-specific properties—especially the overlapping of edges
between graphs—to achieve space and time efficiencies. We
also describe challenges and solutions when building a dis-
tributed system to support this important new functionality.

We formalize temporally biased sampling for dynamic
graphs via a probabilistic edge decay (PED) model. Under this
model, we sample interactions from the current snapshot. Each
interaction has an independent probability of appearing in the
resulting sample graph, and this probability is non-increasing
with the age of the interaction. The PED model subsumes
both snapshot and sliding-window models; see Section III. To
control sampling variability, we generate multiple independent
sample graphs, execute the analytic algorithm on each one, and
then average (or otherwise aggregate) the results. The practical
advantages of this approach can be significant. In an empirical
study on a real Twitter dataset (see Section VII-B1 below), we
found that a significant fraction of the top influencers found via
the PED approach were either steady but temporarily dormant
influencers like Alice or rising stars like Bob; these important
sets of influencers would be overlooked under a snapshot or
sliding-window approach, respectively.

We have developed an end-to-end system for dynamic
graph analysis, called TIDE, that embodies the above ideas.
TIDE is implemented on top of the Spark distributed process-
ing system [5], leveraging its native streaming [6] and graph
processing [7] support. TIDE allows users to analyze dynamic
graphs using existing algorithms for static graphs; moreover,
analyses can be specified using existing APIs for batch graph
processing systems. Empirical studies on a real Twitter dataset
demonstrate the effectiveness and efficiency of the system.
TIDE is the first distributed system to systematically support
probabilistic edge decay for analyzing dynamic graphs.

The contributions of this paper are as follows:

• We formalize a general PED model for dynamic graphs
that implements temporally biased sampling and sub-
sumes existing models.

• We develop incremental sample-maintenance methods for
PED models with exponential decay functions.

• We exploit overlap between sample graphs to store the
sample set in a space-efficient manner.

• We provide a bulk graph execution model to efficiently
analyze multiple samples of dynamic interaction graphs
simultaneously.

• We exploit overlap between the realizations of a sample
graph at successive time points to allow efficient incre-
mental graph analysis.

• We show how to efficiently implement the TIDE system
using Spark (with some modifications).

• We provide experiments on real-world data to assess our
new techniques.

II. DYNAMIC INTERACTION GRAPHS: EXISTING MODELS

In this section we formalize both snapshot and sliding
window models for dynamic interaction graphs. Given a time
domain T , a dynamic interaction graph (or dynamic graph for
short) is defined as G = (V,E), where V is a set of vertices
and E ⊆ V × V × T is a set of time-stamped edges. The
presence of an edge e = (u, v, t) ∈ E indicates that vertex u
interacts with vertex v at time t. We denote by t(e) the time
stamp associated with edge e. Note that there can be multiple
edges from u to v but with different timestamps. In addition,
there may be other attributes associated with the vertices and
edges of G.



In Twitter, for example, Alice mentions Bob in a tweet
if the tweet includes the string “@Bob”, and this mention
interaction indicates a certain level of attention paid by Alice to
Bob [8]. Such mention interactions in Twitter can be modeled
as a dynamic graph. The vertices are Twitter users, and an edge
from Alice to Bob with timestamp t means Alice mentioned
Bob in a tweet at time t. The actual tweet can be modeled as an
attribute associated with this edge, and user profiles for Alice
and Bob can be captured as vertex attributes. Note that arriving
edges sometimes introduce new vertices into a dynamic graph;
for simplicity, we consider such vertices to already exist in the
dynamic graph, but with no prior adjacent edges.

A snapshot of a dynamic graph G at time t is defined as
Gt = (V,Et), where Et = {e | e ∈ E∧ t(e) ≤ t}. Similarly, a
window of G from time t to t′ is defined as Gt,t′ = (V,Et,t′),
where Et,t′ = {e | e ∈ E ∧ t ≤ t(e) ≤ t′}. In the snapshot
model, an analytic function F applied to a dynamic graph
G at time t is actually applied to the snapshot Gt, with the
result F (Gt). As time advances to t′, the result is updated
to F (Gt′) either by computing it from scratch on Gt′ or by
incrementally updating the result from F (Gt) to F (Gt′). In
the sliding-window model, the function F is applied to Gt−w,t,
where w is a fixed window size, i.e., the analysis only considers
interactions that happened within the last w time units.

Observe that both models embody a binary view of an
edge’s role in an analysis; it is either included for analysis
or not. An included edge has the same importance as any
other edge, regardless of how outdated it is. As mentioned
previously, this simplistic view makes it impossible to satisfy
both recency and continuity requirements simultaneously. In
contrast, temporally biased sampling of the dynamic graph
provides a probabilistic view of an edge’s role: edges from
past to present all have chance to be considered (continuity)
but outdated edges are less likely to be used (recency) in an
analysis, so that the influence of an edge decays over time. In
the following section, we describe the probabilistic edge decay
(PED) model for temporally biased sampling.

III. THE PED MODEL

When applying a function to a dynamic graph at time t
under the PED model, an edge e with a timestamp t(e) ≤ t
has an independent probability P f (e) of being included in
the analysis, where P f (e) = f

(
t− t(e)

)
for a non-increasing

decay function f : <+ 7→ [0, 1]. As time advances, e’s age
t − t(e) increases and the inclusion probability P f (e) either
decreases or remains unchanged. Note that the snapshot model
and the sliding-window model are two special cases of the
PED model with f ≡ 1 and f(a) = I(a ≤ w) respectively,
where I(X) denotes the indicator of event X . In general, we
can require that f be positive and strictly decreasing. Then,
at any time t, every edge e with t(e) ≤ t has a non-zero
chance of being included in the analysis (continuity) but an
edge becomes increasingly unimportant in the analysis over
time, so that newer edges are more likely to participate in the
analysis (recency).

Formally, let G = (V,E) be a dynamic graph and f a decay
function. For t ≥ 0, denote by Gt = { (V,E′) : E′ ⊆ Et } the
set of 2|Et| possible graphs at time t. (Here Et is defined as
in Section II and |Et| denotes the number of edges in Et;

we suppress the underlying dynamic graph G in the notation.)
Define the possible-graph distribution Pf,t over Gt by setting

Pf,t(G′) =
∏
e∈E′

f
(
t− t(e)

) ∏
e∈Et−E′

[
1− f

(
t− t(e)

)]
(1)

for G′ = (V,E′) ∈ Gt. A sample graph at time t (with respect
to f ) is defined as a graph drawn from the distribution Pf,t.
In the PED model, an analytic function F applied to G at
time t is actually applied to N ≥ 1 independent and iden-
tically distributed (i.i.d.) sample graphs Gf,1t , Gf,2t , . . . , Gf,Nt
to yield i.i.d. results F (Gf,1t ), F (Gf,2t ), . . . , F (Gf,Nt ). These
results can be used to control the variability introduced by
the sampling process. In the simplest cases, the results can be
averaged together. For example, if F returns the influence score
for each person in an interaction graph, then one might want
to compute the average per-person influence score at time t.
In general, analysts can decide whether and how they want
to aggregate the results into one result; see Section VII for
further discussion.

In what follows, we focus on the important class of
exponential decay functions of the form f(a) = pa for some
0 < p < 1. We call p the decay probability. In general,
the exponential decay of edges captures most application
scenarios and has been widely adopted in practice [9], [10],
[11]. Moreover, exponential edge decay guarantees that the
space requirement for storing the dynamic graph is bounded
with high probability; see Section IV-B.

For simplicity, we adopt a discretized time approach that
has been widely used in existing work [6], [12]. Specifically,
the continuous time domain is partitioned into intervals of
length ∆, and the dynamic graph is observed only at times
{ k∆ : k ∈ N }, where N = { 0, 1, 2, ... }. Moreover, all edges
that arrive in an interval

[
k∆, (k+ 1)∆

)
are treated as if they

arrived at time k∆, i.e., at the start of the interval. Thus we can
take T = N for the time domain, k ∈ N to represent the age
of an edge, and f(k) = pk to represent the exponential decay
function. Moreover, updates to a dynamic graph can be viewed
as arriving in a stream of batches B0, B1, B2, . . ., where all
incoming edges in batch Bi have time stamp i.

IV. MAINTAINING SAMPLE GRAPHS

In this section we describe how to efficiently maintain
the set of N sample graphs over time. The key ideas are to
incrementally update the sample graphs and to exploit overlaps
between the sample graphs at a given time point by storing the
graphs in an aggregated form. We first describe our general
approach to incremental maintenance of the sample graphs and
then describe how these graphs are stored in a space-efficient
“aggregate graph”. We then combine these techniques to obtain
specific algorithms for eager and lazy updating of the set of
sample graphs.

A. Incremental Updating: General Approach

As time advances from t to t + 1, a naive way to update
the results is to materialize N independent sample graphs
from scratch and then analyze them. However, generating N
samples from the ever larger snapshot graph is prohibitively
expensive. An incremental approach for computing sample
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graphs rests on the following theorem, the proof of which is
straightforward.

Theorem 1. For f(k) = pk, let Gf,it = (V,Ef,it ) be the ith
sample graph at time t, so that Gf,it has probability distribution
Pf,t given in (1), and let Bt+1 be the batch of incoming edges
at time t+1. Let G′ = (V, Sp(E

f,i
t )∪Bt+1), where Sp(E

f,i
t ) is

a Bernoulli sample of Ef,it with sampling probability p. Then
G′ has distribution Pf,t+1, that is, G′ can be viewed as a
sample graph at time t+ 1.

This result provides an efficient way of constructing Gf,it+1

from Gf,it . Instead of generating Gf,it+1 from scratch, we only
need to subsample the edge set of Gf,it and combine the
subsample with the edges in the arriving batch Bt+1. It follows
immediately from the theorem that the N sample graphs at t+1
generated by this incremental updating scheme are the desired
N independent sample graphs, provided that the N sample
graphs at t are independent and each subsampling process is
executed independently. The instantiations of the ith sample
graph at times t and t + 1 overlap significantly. Indeed, it is
not hard to see that, in expectation, Gf,it shares a fraction p of
its edges with Gf,it+1 under incremental updating.

B. The Aggregate Graph

Besides the overlap between instantiations of a sample
graph at two consecutive time points, there is also overlap
between different sample graphs at the same time point.
Suppose, for example, that each update batch is of size M .
Denote by Sp,M,t the number of edges in a sample graph at
time t with decay function f(k) = pk, and assume throughout
that t is large. We then have E[Sp,M,t] ≈M

∑∞
k=0 p

k = M
1−p .

Moreover, Sp,M,t has a Poisson-Binomial distribution, so that,
specializing the high-accuracy “refined normal approxima-
tion” in [13], we have for large t and j = 0, 1, . . . that
P (Sp,M,t ≤ j) ≈ Φ(y) + γ(1 − y2)φ(y), where Φ and φ
are the cumulative distribution function and probability density
function of a standard (mean 0, variance 1) normal distribution,
y = (j+0.5−µ)/σ, γ = (µ/σ3)(p3−p2+p)/(1+p−p3−p4),
µ = M/(1 − p), and σ2 = Mp/(1 − p2). For the moderate
values of p and large values of M encountered in practice—
e.g., p = 0.8 and M = 13.9 million in our experiments—
the distribution of Sp,M,t is sharply concentrated around its
mean. With the above values of p and M , for example,
Sp,M,t lies within roughly ±1% of its mean with a prob-
ability exceeding 99.99%. Denoting by S′p,M,t the number
of edges shared by one sample graph with another, we have
E[S′p,M,t] ≈M

∑∞
k=0 p

2k = M
1−p2 , because an edge with age

k has a probability pk · pk = p2k of appearing in both sample
graphs at the same time. Again, there is sharp concentration
about the mean, and so the expected fraction of shared edges
is E[S′p,M,t/Sp,M,t | Sp,M,t > 0] ≈ M

1−p2 /
M
1−p = 1

1+p >
1
2 ,

and similarly S′p,M,t/Sp,M,t > 1/2 with high probability.

Given the significant overlap between different sample
graphs at a time point, we see that naively maintaining N
sample graphs Gf,1t , Gf,2t , . . . , Gf,Nt separately incurs much
redundancy. Instead, we can store the N sample graphs as a
single aggregate graph G̃ft = (V,

⋃N
i=1E

f,i
t ), where the edge

sets of the sample graphs are simply unioned. Figure 2 shows
an example aggregate graph comprising three sample graphs.
The attributes for an edge that appears in multiple sample
graphs need only be stored once in the aggregate graph. For
each aggregate edge, we keep track of the sample graph(s) to
which the edge belongs.

In contrast to the continually increasing memory require-
ment in the snapshot model, the PED model has a bounded
memory requirement as new edges are added over time,
provided that the update batch at each time stamp is bounded.
Denoting by M the maximum size of an update batch, we see
from our earlier analysis that the size of each sample graph
is bounded by M

1−p with very high probability. It follows that
even the naive approach of storing N sample graphs separately
has a sharp probabilistic upper bound of MN

1−p edges.

To analyze the expected space requirement for the aggre-
gate graph, first observe that, under incremental updating, an
edge e that does not appear in the aggregate graph at time t
will not appear in the aggregate graph for t′ > t. As a result,
we can establish a memory bound that is significantly smaller
than that of the naive approach.

Theorem 2. Let M be the maximum size of an update batch,
and f(k) = pk be an exponential decay function. Then the
expected number of edges in the aggregate graph of N sample
graphs at any time is bounded by Mdlog 1

p
(N)e+ M

1−p .

Proof: Based on the definition of the exponential decay
function, an edge whose age is k just prior to a given update
of a sample graph will be removed from the graph with
probability 1−pk. Thus the edge has probability 1−(1−pk)N

of appearing in at least one of N sample graphs after an update.
The expected total number of edges in the aggregate graph
is therefore bounded by

∑∞
k=0M

(
1 − (1 − pk)N

)
. Setting

K = dlogp
1
N e = dlog 1

p
Ne, we have

∞∑
k=0

M(1− (1− pk)N )

=M

K−1∑
k=0

1− (1− pk)N +M

∞∑
k=K

1− (1− pk)N

≤MK +M

∞∑
k=K

Npk = MK +
MNpK

1− p

≤Mdlog 1
p
(N)e+

M

1− p
,

where (1− pk)N ≥ 1−Npk by Bernoulli’s inequality.

The above theorem provides an upper bound (for all time
points) on the expected memory consumption when using the
aggregate graph to maintain N sample graphs. Observe that the
expected number of edges that need to be stored is reduced
from O(MN) for the naive approach to O(M logN). For
example, when p = 0.8 N = 96, and M = 10 million, the
expected storage requirement would be 4.8 billion edges for
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the naive approach but only about 250 million edges using the
aggregate graph. Arguments as before show that, typically, the
above expected storage complexities for the two approaches
also yield high probability upper bounds. In the aggregate
graph, we can use a bit array for each edge e to indicate the
sample graphs in which e appears; this additional storage is
worthwhile because of the savings from not storing redundant
edges and their attributes. In fact, as we show in Section IV-D
below, we can even avoid storing the bit array for an edge and
simply materialize it whenever it is needed.

C. Eager Incremental Updating

We can now combine incremental updating techniques
with the aggregate graph to obtain specific algorithms for
maintaining a set of N sample graphs. Our first approach
is called the eager incremental updating method and is a
straightforward implementation of the process described in
Theorem 1.

We store the N sample graphs together in the aggregate
graph, and attach a bit array of size N , denoted as β, to each
edge e in the aggregate graph, to indicate the sample graphs to
which this edge belongs. Specifically, e.β[i] = 1 means that e
appears in the ith sample graph and e.β[i] = 0 otherwise. As
shown in Figure 3(a), whenever a new edge e is first added
to the dynamic graph, e.β[i] = 1 for all i, because the edge
appears in all sample graphs. As time goes by, e gradually
disappears from some sample graphs. At each batch arrival
time, we apply a Bernoulli trial with probability p on e for
each sample graph where e still appears. Thus, at each update,
we scan through the bit array and, for each bit that equals 1,
we set it to 0 with probability 1− p. Once β contains all 0s,
we remove the edge from the aggregate graph.

This eager incremental updating method is simple and
straightforward, but it requires a bit array of size N for
each edge in the aggregate graph. This motivates our second
approach, the lazy incremental updating method.

D. Lazy Incremental Updating

The lazy incremental updating method avoids materializing
the bit arrays based on the observation that the life span Lie of
edge e in the ith sample graph follows a geometric distribution;
the life span is the time from when the edge arrives until it is
permanently removed from the aggregate graph via a Bernoulli
subsampling step. That is, P (Lie = l) = pl−1(1 − p) for l ∈
{ 1, 2, . . . }. Note that Lie ≥ 1 because e always appears in all
of the sample graphs when it first arrives. Figure 3(b) shows
the life spans in different sample graphs of the example edge
in Figure 3(a).

Based on this observation, we can simplify the incremental
updating process. For an edge e that has just been added

to the ith sample graph, we directly sample the lifetime Lie.
Then, based on the edge’s time stamp t(e) and the life span
Lie, we know exactly when it will disappear from the ith
sample graph. Observe, however, that we need to keep track
of the life span for each edge in each sample graph. A naive
approach would use N integers per edge, which is an even
worse storage requirement than for the N bits per edge in the
eager incremental updating method.

We avoid the storage problem by using a lightweight
method to deterministically materialize the N integers when-
ever they are needed, while maintaining their mutual statistical
independence. Specifically, we exploit a 64-bit version of the
MurmurHash3 random hash function [14]. Given the unique
combination of an edge ID and a sample graph ID, Mur-
murHash3 can deterministically and efficiently generate a 64-
bit integer. Moreover, the integers generated for different (edge
ID, graph ID) combinations appear random enough to pass
the highly rigorous TestU01 [15] test suite for pseudorandom
number generators. We use standard techniques to transform
the pseudorandom 64-bit integers produced by MurmurHash3
into pseudorandom samples from the geometric distribution;
see, for example, [16, p. 469].

E. General Decay Functions

The foregoing discussion can be generalized to decay
functions other than the exponential function f(k) = pk.
Indeed, for an arbitrary decay function given by f(k) = θk
with 1 = θ0 ≥ θ1 ≥ θ2 ≥ · · · , we can use an eager incremental
updating scheme as before, but with a Bernoulli sampling
rate pk = θk/θk−1 when processing batch Bk for k ≥ 1.
If
∑
k θk <∞, then arguments almost identical to those given

before show that the number of edges in the aggregate graph
is bounded in expectation and with high probability.

V. BULK ANALYSIS OF SAMPLE GRAPHS

The previous section discussed how to efficiently maintain
a set of N sample graphs. In this section, we focus on how
to efficiently execute analysis algorithms on these graphs. An
important design goal of our system is to provide, for dynamic
graphs, the same familiar analytics interfaces used in systems
for managing static graphs. We therefore adopt the popular
vertex-centric iterative computation model used in static graph
processing systems such as Pregel [17], GraphLab [18], Trin-
ity [19] and GRACE [20]. Under this computation model, a
user-defined compute() function is invoked on each vertex v
to change the state of v and of v’s adjacent edges; changes to
other vertices are propagated through either message passing
(e.g., in Pregel) or scheduling of updates (e.g., in GraphLab).
This computation is carried out iteratively until there is no
status change for any vertex. Given this computation model, we
describe techniques both for bulk execution of analytics and for
incremental updating of analytical results as time progresses.

A. Bulk Graph Execution Model

The most straightforward way to analyze N sample graphs
is to materialize each sample graph from the current aggregate
graph and apply the analytic function of interest to each
individual sample graph. However, this naive approach ignores
the significant overlap between the sample graphs, as discussed



in Section IV-A. The key observation is that similar topologies
lead to similar vertex and edge states among the different
sample graphs during the iterative computation.

To take advantage of the similarities among sample graphs,
we propose a bulk execution model on multiple sample graphs.
We first partition the N sample graphs into one or more bulk
sets comprising s (≤ N ) sample graphs. For each bulk set, we
combine the s sample graphs into a partial aggregate graph,
and process the partial aggregate graph as a whole instead of
processing the s sample graphs individually. The state of a
vertex or an edge in the partial aggregate graph is an array of
the states of the corresponding vertex or edge in the s sample
graphs. If an edge does not appear in a sample graph, then the
associated array element is null.

Algorithm 1: Bulk Graph Execution Model
input : A vertex v in a partial aggregate graph of s sample graphs,

its adjacent edges Ev , and its incoming messages inMsgs
1 initialize msgs= ∅; // each element is in the form

<dest vertex id, message, sample graph id>
2 for i=1 to s do
3 construct a new vertex vi where vi.state = v.state[i];
4 inMsgsi=inMsgs.getMsgsForGraph(i);
5 initialize vi’s adjacent edges Evi = ∅;
6 foreach e ∈ Ev do
7 if e is in the ith sample graph then
8 construct ei where ei.state = e.state[i];
9 Evi .add(ei) ;

10 orgMsgs=compute(vi, Evi , inMsgsi);// call user
defined function

11 msgs.add(attachGraphID(orgMsgs, i));
12 v.state[i] = vi.state;
13 foreach ei ∈ Evi do
14 e is the corresponding edge in Ev ;
15 e.state[i] = ei.state;

output: The combined messages grouped by dest vertex id:
grpMsgs=msgs.groupByDest()

Computation at a vertex v in the partial aggregate graph
proceeds by looping through the s sample graphs, reconstruct-
ing the set of v’s adjacent edges in each sample graph and
applying the compute() function. The resulting updates to other
vertices are then grouped by the destination vertex ID and
the combined updates are propagated via message passing
or scheduling of updates. Consider, for example, a message
passing setting, and suppose that the bulk computation on
a vertex v results in two messages to destination vertex u:
〈u,m1〉 for the ith sample graph and 〈u,m2〉 for the jth sample
graph. Then a combined message 〈u, {(m1, i), (m2, j)}〉 is
sent to u. Algorithm 1 demonstrates the bulk execution model
when message passing is used for update propagation. After
one bulk set is complete, we proceed to the next bulk set until
all of the N sample graphs are processed.

The benefit of the bulk graph execution model is multifold.
First, extracting and loading sample graphs from the full
aggregate graph in groups of size s amortizes the nontrivial
overheads of this pre-analysis step. Second, because graph
traversal requires many random memory accesses, bulk ex-
ecution of computations on the same vertex across different
sample graphs results in local computations that yield im-
proved caching behavior. Finally, the similar message values
in a combined message from one vertex to another create
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opportunities for compression during communication over the
network. Likewise, compression can also be applied when
persisting the similar values in the array of states for a vertex
or an edge on disk for checkpointing.

The number s of sample graphs in a bulk set is a tun-
able system parameter that trades off space minimization and
computational efficiency. A larger value of s enables shared
computation among more sample graphs and hence more
benefit from compression of vertex/edge states and combined
updates, but also leads to higher memory requirements for each
bulk execution. We empirically evaluate the effect of choosing
different s values in Section VII-B.

B. Incremental Graph Analysis

Now that we have an efficient way to analyze the N sample
graphs at time t, can we exploit the results at t to more
efficiently generate results at t + 1? We have shown that the
instantiations of a given sample graph at two consecutive time
points share a large number of common edges, which leads to
similar vertex and edge states during the graph computation.
For iterative graph algorithms such as Katz centrality [21]
and PageRank [22] computation, this provides an opportunity
to use the ending vertex and edge states at time t as the
starting states for the iterative computation at time t+1. These
improved starting states can lead to faster convergence. One
caveat is that some algorithms do not work correctly under this
incremental scheme [23], so that recomputation from scratch
is required. Existing dynamic graph processing systems [1],
[2], [24] encounter the same issue.

VI. IMPLEMENTATION ON SPARK

In this section, we provide a brief overview of Spark, and
then describe several important Spark-specific optimizations
that we incorporated when implementing TIDE.

A. Spark Overview

Spark is a general-purpose distributed processing frame-
work based on a functional programming paradigm. Spark
provides a distributed memory abstraction called a Resilient
Distributed Dataset (RDD) to support fault-tolerant computa-
tion across a cluster of machines. RDDs can either reside in
the aggregate main memory of the cluster, or in efficiently
serialized disk blocks. An RDD is immutable and cannot be
modified, but a new RDD can be constructed by transforming
an existing RDD. Spark utilizes both lineage tracking and
check-pointing for fault tolerance.



B. Implementation and Optimization

Figure 4 demonstrates the end-to-end data pipeline of the
TIDE system as implemented on Spark. First, TIDE leverages
Spark Streaming to ingest batches of arriving edges, thereby
supporting input sources such as HDFS, Kafka, Flume, and
so on. The new edges are fed into the incremental updating
component that maintains the sample graphs, the result of
which is a compact in-memory RDD representing the aggre-
gate graph of N samples. TIDE then extracts s samples (where
s is the size of a bulk set) and transforms them into a partial
aggregate graph in the Spark GraphX distributed graph RDD
representation. The iterative bulk graph analysis algorithm is
then executed on this representation of the partial aggregate
graph. TIDE repeats the above process for the successive bulk
sets of s sample graphs until all of the N sample graphs are
analyzed. The result of each bulk graph analysis is an RDD
that can be stored on HDFS or fed into various reporting tools.

Inside the incremental sample updating component, each
batch of new edges is stored in an RDD bt, where t is the
time stamp, and the current aggregate graph is stored in an
RDD gt. Initially, the aggregate graph is just the first batch of
edges, i.e. g0 = b0. At t = 1, a new RDD g′0 is created from
g0 by applying a set of transformations that implement the
one-step edge decay process (i.e., the Bernoulli subsampling
step). Next, g′0 is unioned with b1 to produce the updated
RDD g1. This process continues as time advances. For eager
incremental updating, the decay transformations include a map
operation to update the bit array of each edge and a filter
operation to discard edges that have become nonexistent in
all sample graphs. For lazy incremental updating, the decay
transformation comprises only a filter operation to check
whether an edge has become nonexistent.

The bulk graph analysis component of TIDE is built on
top of GraphX [7] which is an implementation of the Pregel
and GraphLab processing frameworks on top of Spark. In
particular, we implement a bulk execution wrapper for GraphX
that performs the vertex-centric computation on the partial
aggregate graph as in Algorithm 1.

Finally, we use the lineage and check-pointing mechanisms
in Spark to support fault tolerance in TIDE. In what follows,
we highlight some implementation optimizations that are spe-
cific to Spark.

1) In-Place Update: Because of their efficiency, the
TIDE implementation uses memory-resident RDDs exten-
sively. Memory management is a challenge, however. Because
RDDs are immutable, TIDE must continuously create new
RDDs as new edges arrive; indiscriminate creation of a large
number of objects can quickly saturate memory. This is espe-
cially problematic for eager incremental updating, because of
its higher memory requirement for storing the aggregate graph.
Therefore, TIDE avoids creating new objects by applying in-
place updates whenever possible. That is, new RDDs are still
created, but they refer to existing objects in old RDDs. To
keep the lineage of RDDs intact, TIDE must also notify Spark
that the old in-memory RDDs have been changed. Thus, if an
old RDD needs to be reprocessed (e.g., in case of a failure),
it must first be regenerated from the latest checkpoints rather
than being read directly from memory. In Section VII-A, we
explore the effectiveness of in-place update for eager and lazy

incremental updating methods.

2) Location-Aware Balancing Coalesce: In Spark, an RDD
is divided into a set of partitions that are distributed to the
workers in a cluster; each worker can have multiple partitions.
Spark tracks the lineage of each partition, i.e., its parent
partitions and the operations required to obtain the partition
from its parents. For map and filter operations, the resulting
RDD has exactly the same number of partitions as the parent
RDD, even though some of the partitions can become empty
after the filter operation. The union of two RDDs having k1
and k2 partitions is an RDD having k1 + k2 partitions; the
partitions are simply unioned together.

In the incremental updating process, we need to repeatedly
thin the aggregate graph through filter operations (and also map
operations, in the case of eager updating) and union it with
arriving edges. This procedure creates a potential problem.
If the RDD for each batch contains k partitions, then, after
ingesting n batches, the aggregate graph RDD would comprise
nk partitions with highly skewed sizes. Indeed, a partition with
older edges is likely to be quite small, or even empty. Since
the partition serves as the basic scheduling unit in Spark, the
presence of many small and empty partitions incurs a lot of
unnecessary scheduling overhead.

Spark provides a coalesce operation to reduce the number
of partitions in an RDD. If shuffling-based coalesce is used,
then data in the RDD are reshuffled to generate fewer bal-
anced partitions; otherwise, local partitions are simply merged
together. Neither approach is directly applicable to our setting.
Because coalesce needs to be applied frequently, shuffling is
too expensive. On the other hand, arbitrary merging of local
partitions yields highly imbalanced partition sizes. To avoid
shuffling data while generating balanced partitions, we extend
Spark with a location-aware balancing coalesce operation.
This new coalesce operation combines local partitions (and
thus avoids shuffling), but carefully chooses the candidate par-
titions based on their sizes by applying the Longest Processing
Time (LPT) heuristic [25].

3) Distributed Monte Carlo Simulation: The eager incre-
mental updating approach requires independent Bernoulli trials
on each edge in each sample graph. To ensure that there is no
correlation between the pseudorandom numbers generated for
different Spark workers, we use the technique discussed in [26]
for generating multiple streams of uniform numbers that are
provably disjoint. In addition, we track the starting seed for
each Spark partition, so that an updating operation on a given
partition always produces exactly the same result if executed
again (e.g., during failure recovery).

VII. EXPERIMENTAL EVALUATION

In this section, we first describe some experiments designed
to test the performance of our techniques for maintaining
a set of sample graphs. We then evaluate the quality and
performance of the PED approach when the sample graphs
are used for influence analysis and community analysis.

Cluster Setup. All experiments were conducted on a clus-
ter of 17 IBM System x iDataPlex dx340 servers. Each
has two quad-core Intel Xeon E5540 2.8GHz processors
and 32GB RAM; servers are interconnected using a 1Gbit



Ethernet. Each server runs Ubuntu Linux and Java 1.6.
One server is dedicated to run the Spark coordinator
and each of the remaining 16 servers is configured to
run a Spark worker. We set SPARK WORKER CORES=8,
SPARK WORKER MEMORY=28G, and default values for
the other Spark parameters, based on standard practice.

Dataset. We used a real Twitter dataset for our experiments. It
was obtained via the GNIP service and comprises 10% of the
tweets generated between Sep 9, 2011 and Feb 29, 2012. We
extracted the mention interactions out of this Twitter dataset
and formed dynamic graphs. On average, 13.9 million new
interactions were added per day. We experimented on daily
batches, 2-day batches and 3-day batches in our empirical
studies. The reason for such a coarse-grained discretization
is to ensure that the data is of a large enough scale to test
the system, since our dataset is only a small sample of the
Twitter stream. In real settings, interactions are generated much
more frequently, and thus a fine-grained discretization such
as hourly batches would be adopted. In our experiments, the
largest running aggregate graph contains around 65 million
vertices and 1 billion edges.

Parameters. There are three important parameters that need
to be specified in TIDE: the decay rate p, the total number of
sample graphs N to incrementally maintain, and the number
of sample graphs s in each bulk set for graph execution.

The decay rate p is completely application specific, and
controls the proportion of historical interactions that an ap-
plication considers in the analysis. For example, by setting
p = 0.8, around 0.1% of the interactions from 30 periods ago
are included in the current analysis. As another example, sup-
pose that we want to ensure that, with probability q = 0.01, an
influencer who had n = 1000 interactions k = 60 periods ago
is still represented in the current network, where “represented”
means having at least one adjacent edge remaining. Then we
would set p = [1− (1− q)1/n]1/k ≈ 0.825.

The number N of sample graphs controls the precision of
the results. A variety of statistical methodologies are avail-
able for determining a good value of N . A comprehensive
discussion of this topic is beyond the scope of the paper, so
we content ourselves with a few examples. In the simplest
setting, the goal of the analysis is to compute an expected
value µ of an analytic graph function F with respect to
the possible-graph distribution Pf,t defined in (1). That is,
µ =

∑
G′∈Gt F (G′)Pf,t(G′) or, equivalently, µ = E[F (G′)],

where G′ is a sample graph at time t. As an example,
F might return the average influence score of the top 100
influencers. Given an initial value of N , we compute i.i.d.
result samples X1, X2, . . . , XN , where Xi = F (Gf,it ) and
Gf,it is the ith sample graph. Then µ̂N = N−1

∑N
i=1Xi is

an unbiased and strongly consistent estimator of µ. Assuming
that N is sufficiently large (say, N ≥ 20), one can compute
a standard 100(1 − δ)% approximate confidence interval as
µ̂ ± zδsN/

√
N , where zδ is the (1 − 0.5δ)-quantile of the

standard normal distribution and sN is the sample standard
deviation of X1, X2, . . . , XN . If the confidence interval is
too wide and the desired accuracy is ±100ε%, then, going
forward, N can be increased to N∗ = z2δs

2
N/(εµ̂N )2 to try

and achieve the desired accuracy. In general, we can monitor
the confidence interval of the results as time progresses and

increase N on the fly when the estimated accuracy falls below
a threshold.1 If F takes values in <d for some d > 1, then
the above methodology can be applied, but using, e.g., an
appropriate hyper-rectangular confidence region of specified
maximum edge length on the d quantities of interest [27]. In
more complex situations where, e.g., F returns a list of top-k
influencers or an iceberg-query result of all persons with influ-
ence score above a threshold, simple averaging of the results
from the different sample graphs may not suffice—see, e.g.,
[28]. The procedures for aggregating the results might then
become complex, so that simple formulas for estimating error
may not be available. In this case, bootstrapping techniques
or other methods for assessing uncertainty may be needed;
see [29] for a recent discussion.

As discussed in Section V-A, a larger number s of sample
graphs in a bulk set provides more benefit from compression,
but leads to higher memory requirements. Based on our
implementation of TIDE using Spark, given an application and
the average per-batch update size, we can estimate an upper-
bound memory usage for a partial aggregate graph of s samples
plus the expected maximum number of messages per iteration.
The largest s value, with which the estimated memory size
doesn’t exceed the aggregated worker memory size in Spark,
is in general a good and safe choice.

For the experiments in this section, we found that p = 0.8
is a reasonable decay rate for our example graph applications.
Using the process for deciding N as described above, we
found that N = 96 provides accurate enough results for all
experiments. In addition, for the 3-day batch dataset and the
graph algorithms used in our experiments, s = 16 is reasonable
choice. However, in order to demonstrate the effect of the three
parameters on the performance of TIDE, we also experiment
with different settings of p, N and s.

In our experiments, we load the streaming input data as
a sequence of HDFS files and produce an output sequence of
HDFS files that represent the final analytic results at successive
time points. We focus on evaluating the performance of the
incremental updating and bulk graph analysis components of
the TIDE system pipeline shown in Figure 4, because the time
of the remaining operations (reading input, extracting partial
aggregate graphs, and outputting analysis results) is negligible
by comparison. Indeed, for the iterative graph algorithms we
consistently observed that these remaining operations com-
prised less than 1.5% of the total execution time.
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A. Incremental Updating Methods

In this section we empirically study the performance of in-
cremental updating methods. The coalesce and check-pointing
operations were carried out for every 10 batches. For the daily

1If N needs to be increased in TIDE, we have to compute the set of sample
graphs from scratch. However, this happens infrequently.
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batch update, on average every check-pointing takes 47sec for
eager updating but only 24sec for lazy updating, because the
lazy updating method stores less data. We focus on per-batch
comparisons between eager and lazy updating by excluding
the times required for check-pointing and coalescing from the
execution times reported below.

Comparison of Updating Methods. Figure 5 depicts the
per-batch execution times for eager and lazy updating, both
with and without in-place update, for the first 50 time stamps
(batches), using the 2-day batch data as a representative. As
shown, the in-place update has a huge effect on the eager
updating method. This is because eager updating has a high
memory requirement for storing the per-edge bit arrays. With-
out in-place updates, new bit arrays are continually created as
decay transformations are applied. Indeed, a given edge can be
re-created multiple times. When memory becomes saturated,
garbage collection is invoked to reclaim obsolete objects,
causing spikes on the curve for eager updating without in-place
updates. In comparison, the lazy updating method benefits little
from in-place update because it does not materialize bit arrays;
we therefore omit the numbers for lazy updating with in-place
updates in the remaining experiments. The running time for
the naive sampling method is not reported in Figure 5 because
it is extremely slow—it has to read and iterate over all the
data at each batch arrival. For, e.g., the 50th batch, merely
loading the data takes about 78 seconds, and extracting a single
sample graph takes about 12 seconds, which means roughly 20
minutes are required for the naive method to obtain all of the
sample graphs for this single batch.

It can be seen from Figure 5 that, for all four incremental
updating methods, execution times initially grow as new edges
are added, but gradually stabilize. This is because the aggregate
graph size initially increases quickly, but the rate of increase
tapers off by around the 30th batch, reflecting the probabilistic
upper bounds discussed in Section IV-B.

Figure 6 displays, for various batch sizes, the average
execution times per batch after the first 30 batches (i.e. after
the execution times stabilize). In-place update shows increasing
benefit—from 1.5x to 4.4x speedup—for eager updating as the
batch size increases. In addition, lazy updating exhibits a very
steady growth rate, with a consistent speedup of approximately
2.7x over the in-place eager approach.

We also study the effects on system performance of the
decay factor p and the number of samples N . Because of
limited space, we only show results for the lazy updating
method on 2-day batches, but experiments on other batch
sizes exhibit the same trends. Table I displays the average
execution time per batch under several different parameter
settings. The running times increase in accordance with the

TABLE I. PER-BATCH TIME FOR LAZY UPDATING (AFTER 30TH
BATCH)

parameter avg time # edges in 50th batch
p = 0.5, N = 96 2.04 sec 201 million
p = 0.8, N = 96 3.87 sec 605 million
p = 0.8, N = 192 5.47 sec 683 million

TABLE II. COALESCE OPERATIONS FOR LAZY INCREMENTAL
UPDATING

shuffle-based non-shuffle location-aware
skewness 1.01 8.64 1.08
time (sec) 120.62 0.84 1.84

number of edges in the aggregate graph, but the increase is
not necessarily proportional to the number of edges. This is
because the incremental updating methods run very fast, so
that Spark’s job launching and task scheduling times become
non-negligible.

Location-Aware Balancing Coalesce. We also study the
impact of the location-aware balancing coalesce operation
described in Section VI-B2 relative to the two existing shuffle-
based and non-shuffle coalesce operations in Spark. We define
the skewness of partitions as the ratio of the maximum partition
size divided by the minimum partition size. The skewness is
1 for balanced partitions.

Table II compares the three coalesce operations when
performed at the 40th time stamp of the lazy updating method
using the 2-day batch dataset. Shuffle-based coalesce generates
balanced partitions, but requires orders of magnitude more
running time than the other methods. Non-shuffle coalesce is
fast, but produces unacceptably skewed partition sizes. Our
location-aware balancing coalesce produces good balanced
partitions reasonably quickly. For eager updating, the skew-
nesses of the three coalesce operations are similar to those
for lazy updating. The execution times for non-shuffle and
location-aware balancing shuffle stay the same, since these two
algorithms merely combine local partitions without touching
the data underneath. However, the shuffle-based coalesce takes
more time (350 sec) for eager updating.

B. Dynamic Graph Analysis

We choose three representative graph algorithms to demon-
strate how our PED model can be used in two example graph
applications. We then discuss the performance impact of the
bulk graph execution technique. All experiments in this section
were conducted on the 3-day batch datasets. To avoid dealing
with the initial transient phase where graph size increases
dramatically, we report qualitative results for the 40th batch
and performance results from the 40th batch onward. The
aggregate graph contains around 65 million vertices and 1
billion edges from the 40th batch onward.

1) Influence Analysis: Influence analysis is one of the
most important types of analysis for social graphs. Centrality
measures of vertices are widely used in practice for this
application [30]. We chose the following two representative
centrality measures:

Degree centrality. Degree centrality is the simplest way to
measure the relative importance of a vertex in a graph. The
degree-centrality score of a vertex v is defined as the number
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of edges incident to v: Cdeg(v) =
∑
u

∣∣E(u,v)

∣∣, where E(u,v)

is the set of edges from u to v.

Katz centrality. Katz centrality is a more complex measure
of the importance of a vertex. The Katz centrality of a vertex
v measures the number of paths that end at v, penalized by
the path length: CKatz(v) =

∑
u

∑
x∈Path(u,v)

αl(x), where
Path(u,v) is the set of paths connecting u to v, l(x) is
the length of path x, and α is an attenuation factor. In our
experiments, we set α = 0.002.

We consider analytic functions F that return the centrality
score for each vertex in a graph, and our goal is to estimate
µ, the expected value of F with respect to the possible-
graph distribution Pf,t. As discussed previously, we estimate µ
unbiasedly by µ̂N = N−1

∑N
i=1 F (Gf,it ); i.e., for each vertex,

we compute the average centrality score over the N sample

graphs at time t.

To evaluate the quality of the results, we compare the
estimated influence scores in µ̂N to the ground-truth influence
scores in µ. The ground-truth vector µ can be computed ex-
actly by incorporating the decay probabilities in the centrality
calculation. For degree centrality, the expected number of in-
cident edges is computed as Cdeg(v) =

∑
u

∑
e∈E(u,v)

P f (e),
where P f (e) = f

(
t − t(e)

)
is the decay probability of

e. For Katz centrality, the expected number of penalized
paths connected to a vertex is computed as CKatz(v) =∑
u

∑
x∈Path(u,v)

αl(x)P (x). Here P (x) is the probability
of a path x, which can be calculated as the product of
the probabilities of the edges in x. Note that computing µ
for either algorithm is prohibitively expensive for real-world
applications, because it requires computation over all edges
from the past. The size of the dynamic graph quickly grows
beyond the capacity of any graph processing system.

Figures 7(a) and 8(a) compare, for each of the top 100
vertices (the 100 vertices with the highest true expected
centrality scores), the average (over the 96 sample graphs)
degree-centrality and Katz-centrality scores to the ground truth
expected scores. As can be seen, the differences are almost
indistinguishable.

Figures 7(b) and 8(b) display the coefficient of variation,
over the 96 sample graphs, of centrality scores for the top
100 vertices. For degree centrality, all vertices have variations
less than 0.5%, and for Katz centrality, although the variations
are slightly higher, but they are all less than 3%. Clearly, the
multiple samples yield good estimates of expected degree and
Katz centralities. All of the above results show that choosing
N = 96 achieves sufficient accuracy for both algorithms.

PED vs Snapshot and Sliding-Window Models. To demon-
strate the potential practical benefits of the PED approach, we
empirically compare the set of influencers (as measured by
degree centrality) found from our real Twitter dataset when
using a PED, snapshot, and sliding-window model (with a
window size of three days). Among the top 100 influencers
found by the PED model, about 24% of them were, like Alice
in Example 1 of Section I, temporarily dormant influencers
missed by the sliding-window model and 25% were, like Bob,
rising star influencers missed by the snapshot model. Similarly,
of the top 1000 influencers found by PED, 17% were like Alice
and 26% were like Bob. In summary, a significant portion of
potentially important influencers would be totally missed using
either the snapshot model or the sliding-window model instead
of PED.

2) Connectivity and Community Analysis: Connectivity
and community analysis explores the community structure in
social graphs. Existing studies [31] have shown that a social
network usually contains a giant connected component that
consists a constant fraction of the entire graph’s vertices. In
this example application, we study the characteristics of this
giant component under the PED model.

We ran the connected-component algorithm on each sample
graph to identify the giant component. The average size of
the 96 giant components is 32.3 million vertices with a small
standard deviation of only 2207. We observed that about 19
million vertices belong to the giant components of all sample



graphs and form the high-probability “backbone” of the giant
component. On the other hand, there are about 11.1 million
vertices that appear in less than 10% of the sample graphs.
Such vertices are connected to the network via edges that are
infrequent and/or old. Our PED model can help us understand
these two different types of vertices.

3) Performance of Bulk Graph Execution: In this subsec-
tion, we evaluate the performance of the bulk graph execution
technique when analyzing degree centrality, Katz centrality,
and connected-component structure. The three analysis algo-
rithms span a range of graph analysis complexities. Deter-
mination of degree centrality does not require any iterative
computation. The computation of Katz centrality is iterative,
similar to that of PageRank. Moreover, it can use the in-
cremental graph analysis scheme discussed in Section V-B
to incrementally update the centrality scores from time t to
time t+ 1. Connected-component computation is iterative but
cannot leverage the incremental graph analysis scheme. This
is because the label-propagation-based algorithm [32] cannot
correctly handle incremental deletions of edges, so that re-
computation from scratch is necessary at each time point.

In this experiment, we measure average bulk graph process-
ing results from the 40th update onward, i.e., after stabilization.
We use LZF compression for shuffling in Spark. Empirically,
we observed that the use of LZF reduced run times by up to
46% for the bulk graph execution model and up to 12% for
the naive execution model (processing one sample graph at a
time).

Figure 9 compares the bulk graph execution model to the
naive approach for the above three algorithms and for various
values of the bulk-set size s. At any time point during the
iterative Katz-centrality or connected-component algorithms,
convergence occurs at roughly the same speed for all N sample
graphs, due to their similar topologies and computation states.
When processing the 40th batch, for example, the connected-
component algorithm converges in 13 to 15 iterations for most
sample graphs. Because the Katz-centrality computation takes
roughly the same amount of time for each iteration, we report
the per-iteration execution time, whereas we report the total
execution time for the other two algorithms.

The bulk graph execution model essentially degenerates to
the naive approach when s = 1, but the execution times are
all slower than that of the naive approach, due to the overhead
of the bulk-execution wrapper. As s increases, this overhead
is quickly amortized and the per-sample-graph performance
gradually surpasses that of the naive approach. However, at
some point, the advantage starts to decrease due to the higher
memory burden of storing a larger partial aggregate graph.
Figure 9(b) also shows the running time for Katz centrality
for different decay factors p. The running time under p =
0.5 is significantly less than p = 0.8 because the aggregation
graph contains only about one third of the edges. Still, bulk
execution significantly reduces the average running time per
sample graph in both cases.

Bulk graph execution benefits the simple degree central-
ity algorithm much more than the two iterative algorithms,
because a non-trivial overhead must be paid per iteration in
GraphX. Consider, for example, the execution times for the
first five iterations of the connected-component algorithm; see

Figure 9(c). It is known [32] that most of the computation in
this algorithm occurs in the first few iterations (five iterations
in our case). Even though there is very little to do in remaining
iterations, we still must pay the per-iteration overhead in
GraphX. As can be seen, the time for each remaining iteration
is more or less the same for different bulk-set sizes.

As discussed before, the iterative Katz-centrality algorithm
is able to leverage the incremental graph analysis scheme by
using the end states at a time point as the starting states for
the next time point. Empirically, we observed substantial per-
formance improvements when using this incremental scheme.
As an example, for a randomly chosen sample graph at the
40th batch, the Katz-centrality algorithm requires 28 iterations
to converge if computing from scratch. In contrast, by reusing
the result of the 39th batch, only four iterations are needed.

VIII. RELATED WORK

In recent years, a number of distributed graph processing
systems [17], [33], [34], [19], [20], [35], [32] have been pro-
posed for static graphs. For distributed processing of dynamic
graphs, existing systems include Kineograph [1], as well as
environments designed for incremental iterative data flows,
such as Naiad [2] and the system described in [24]. All
three of these systems, however, are based on the snapshot
model. Several recent works have investigated, from a graph-
database perspective, the problems of storing and retrieving
large-scale evolving graphs [3], [36], [37], but they do not
consider complex graph analytics such as influence-analysis
and community-detection algorithms.

In [38], a modified definition of Katz centrality was pro-
posed to capture both time-dependency and recency of random
walks in a dynamic graph. In comparison, TIDE was not
just designed for a specific graph algorithm, but as a general
platform to support various graph algorithms on dynamic
graphs.

The general idea of temporally biased sampling in (non-
graph) data streams was introduced in [4] to reduce staleness
in the sample in order to obtain analytic results more relevant
to the present. Data-decay methods were studied for data
streams [39], but the focus was on relatively simple aggrega-
tion queries. The use of probabilistic edge decay for analysis
of dynamic graphs has not been formally studied before.

IX. CONCLUSION

We have described TIDE, a distributed system for an-
alyzing dynamic graphs. TIDE employs a model based on
probabilistic edge decay to implement a temporally biased
sampling scheme that allows controlled trade-offs between
emphasizing recent interactions and providing continuity with
respect to past interactions; the PED model generalizes existing
snapshot and sliding-window models. To facilitate mainte-
nance of a set of sample graphs, we have provided both
provably compact “aggregate” representations and efficient
incremental updating methods. We have also introduced a bulk
execution model to simultaneously process these graphs using
the same programing APIs as are found in existing static
graph processing systems. Through experiments on a Twitter
dataset, we have demonstrated the effectiveness and efficiency
of our proposed methods for tasks such as identifying key
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Fig. 9. Bulk graph execution vs the naive approach

influencers and exploring community structure. Future work
includes investigating decay functions beyond the exponential
function and leveraging results from the probabilistic database
community to obtain a more comprehensive set of analysis
techniques for sample graphs.
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