
Wildfire: Concurrent Blazing Data Ingest and Analytics

Ronald Barber Matt Huras∗ Guy Lohman C. Mohan Rene Mueller
Fatma Özcan Hamid Pirahesh Vijayshankar Raman Richard Sidle

Oleg Sidorkin• Adam Storm∗ Yuanyuan Tian Pınar Tözün
IBM Research – Almaden ∗IBM Analytics •IBM DemandTec

ABSTRACT
We demonstrate Hybrid Transactional and Analytics Pro-
cessing (HTAP) on the Spark platform by the Wildfire pro-
totype, which can ingest up to ≈6 million inserts per second
per node and simultaneously perform complex SQL analyt-
ics queries. Here, a simplified mobile application uses Wild-
fire to recommend advertising to mobile customers based
upon their distance from stores and their interest in prod-
ucts sold by these stores, while continuously graphing ana-
lytics results as those customers move and respond to the
ads with purchases.

1. INTRODUCTION
Traditionally, OLTP (On-Line Transactional Processing)

systems have been separated from OLAP (On-Line Ana-
lytics Processing) systems because of the incompatibilty in
their requirements: resource-hungry, long-running analyt-
ics queries interfere with the latency requirements of short-
running transactions. However, recent advances in speeding
up analytics queries [6, 7, 8, 9] now make it possible to com-
bine these systems into one integrated system called Hybrid
Transactional and Analytics Processing (HTAP). Doing so
permits analytics to see the latest transactions, reducing the
business risk of making wrong decisions, such as fraud de-
tection, on stale data. It also dramatically increases busi-
ness agility, permitting reports and analytics on operational
data to perform real-time pricing, inventory, and supply-
chain management. Thirdly, combining systems simplifies
the system landscape and reduces operational costs.

Concomitantly, the increased availability of “Big Data”
sources, tools, and processing power has spawned new ap-
plications that seek to understand and exploit individual
customer behavior through analysis of that data. This anal-
ysis may include any combination of machine learning, graph
processing, and stream processing, as well as more tradi-
tional forms of summarization, analytics, and reporting. Data
volumes are increasingly driven by the wide deployment of
inexpensive sensors, especially on mobile, geo-located plat-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2899406

forms, which now generate large volumes of data at much
higher rates than traditional transactional data, in aggregate
exceeding millions of rows per second. These requirements
have largely driven these new applications toward the Spark
platform [10, 2] , which offers: massively parallel execution
on clusters of inexpensive commodity machines; in-memory
processing that is 10x to 100x faster than Hadoop; flexible
programming interfaces; and rich library support for ma-
chine learning, graph processing, and data streaming.

This demonstration presents Wildfire, which seeks to sup-
port this new class of scalable HTAP applications that re-
quire ultra-high data ingest rates in excess of 1 million in-
serts per second per node while concurrently performing an-
alytics queries at speeds comparable to the latest Relational
DBMS (RDBMS) engines [6, 7, 8, 9] , about one half order

of magnitude faster than existing Spark SQL [4] . We lever-
age the Spark infrastructure to provide a massively paral-
lel and elastic HTAP solution that enables different types
of analytics via the Spark ecosystem (Spark SQL, MLLib,
GraphX, etc), but can also ingest data at very high rates.
Our longer-term goal is to provide ACID transactions at
these rates, and even to run analytics queries as part of
such transactions (true HTAP).

To demonstrate Wildfire, we chose a hypothetical but
plausible system that offers promotions to mobile customers
whose new locations are continuously ingested. The pro-
motions are offered as advertisements that are decided by
a simulated machine learning model that is a function of
the proximity of each user to store locations selling certain
products, the remaining advertising budget for each store,
the time since the last promotion displayed to that user,
etc. The demo shows the rates at which user locations are
ingested, while showing the results of several concurrently-
executing analytic queries that summarize the data either
geographically, by store, or by product category.

Our contributions include: (1) ingesting data to a dis-
tributed, persistent store (Solid-State Drives on commodity
servers) at rates around 6 million / second / node; (2) con-
currently performing multiple complex SQL analytic queries
involving joins, grouping, and aggregation over this distributed
data, using Spark SQL, as soon as it is persisted; and (3)
simulating the exploitation of machine learning models de-
rived from this data to make real-time business decisions
based upon real-time location and budgetary information.

2. WILDFIRE ARCHITECTURE
Figure 1 shows the current Wildfire architecture. We

have a cluster of Wildfire engines running concurrently to

http://dx.doi.org/10.1145/2882903.2899406

Driver Program
OLAP in SparkSQL

ML, Graph, etc.

…Spark
Executor

Wildfire
Engine

Data
Ingestion

Spark
Executor

Wildfire
Engine

Spark
Executor

Wildfire
Engine

Data
Ingestion

Data
Ingestion

control flow
data flow

…

Figure 1: Wildfire Architecture for Demo.

ingest data and serve OLAP queries. Each table in our
system is partitioned across the Wildfire engines, and each
Wildfire engine ingests its partition of the data through a
fast native API (marked as Data Ingestion in Figure 1). To
enable distributed and complex analytics over large volumes
of data, we integrate with Spark to run multiple Wildfire en-
gines in a cluster, answering analytics queries through the
Spark SQL interface. The Wildfire application driver runs
in Spark and spawns Spark executors to coordinate the re-
quests/results to/from the distributed Wildfire engines.

2.1 Wildfire Engine: Storage and Processing
Tables in Wildfire are stored in large blocks (up to 64

MB each) using a PAX layout [3] that is similar to Parquet

[1] . As such, each block contains all column values for a
given set of rows of the table, and the values are stored in
column-major format within the block. Wildfire employs a
block-local minus-coding scheme to compress the values in
the block. The encoding is fixed in size (from 0 to 64 bits)
within each block, and encoded values are written in fixed-
sized chunks, with 512 values per chunk. The combination
of the fixed-size encoding and chunking enables fast column
scans on the encoded data. Given the PAX layout and lo-
cal compression, the storage blocks are fully self-contained
and portable. Therefore, these blocks are amenable to pro-
cessing in a distributed compute environment such as Spark
and storage within a cluster filesystem such as HDFS. In ad-
dition, one can efficiently append to an existing block and
perform point-access to a data item in a block.

Wildfire uses a columnar query engine that has many sim-
ilarities to the query engine of DB2 with BLU Acceleration
[9] . Wildfire processes composite queries, such as joins, in
multiple stages. Each stage scans a single input table. A
query stage can have side-effects, for example by generating
a hash table for the “build” of a hash join (to be probed
during a subsequent stage that scans the outer table) or by
inserting into another table. A query stage is executed as a
sequence of operators, called evaluators. Evaluators employ
vectorized processing, with each evaluator taking as input
a set of vectors of values and producing one or more result
vectors. Each query thread has its own evaluator sequence.
Query threads perform work-stealing on the single input and
fully process a batch of input rows through all evaluators be-
fore obtaining another batch.

To achieve high ingest rates, Wildfire provides a native re-
quest interface in the form of pre-compiled stored procedures
for inserts to each table. In addition, the engine combines

Users UserLocations

AdsShownUserInterests

PurchasesAds

CategoryID

U
se

rID

UserID

Ad
ID

U
se

rID
,

Ti
m

e

AdID

Stores StoreID

Heaviest
INSERTs

Figure 2: Wildfire Demo Application Schema.

multiple insert requests and applies them in batched fashion
using the vectorized processing described above. Blocks are
appended to files when full or at the end of a batch insert.

Wildfire also uses non-partitioned hash joins and Con-
cise Hash Tables, as described in [5] . In addition to col-
umn scans, hash joins, and inserts, Wildfire has support for
many other evaluators, such as hash-based group by, pred-
icate evaluation, expression evaluation, and updates of in-
memory (non-persistent) indexes.

2.2 Integration with Spark
To support distributed OLAP, we integrate the Wildfire

engine into the Spark environment, as shown in Figure 1.
We achieve this integration by implementing the Spark Data
Sources API for Wildfire. Users issue their OLAP queries
against the tables partitioned across the Wildfire engines
through the Spark SQL interface, which submits the same
query to all the Wildfire engines for processing and com-
putes the final result. We configure the Spark driver to
spawn one Spark executor for each Wildfire engine. To take
advantage of locality, we also provide location hints to Spark
so that the Spark executors are spawned on the same ma-
chines as the Wildfire engines. A submitted query is passed
down from each Spark executor to its Wildfire counterpart
through a TCP connection, and the Spark executor subse-
quently receives results back from the engine over the same
connection. The final query result can then be further used
for machine learning, graph, or other analyses supported by
the Spark ecosystem.

3. DEMO

3.1 Application
To drive the demonstration of Wildfire, we have imple-

mented a simplified application to offer promotions (adver-
tisements) for products to mobile users whose locations are
ingested at very high rates and stored persistently in solid-
state drives (SSDs) by Wildfire. Which ad is shown to each
user, and which products each user purchases, are also stored
in separate tables.

3.1.1 Schema
Figure 2 provides the schema diagram for the applica-

tion; each rectangle corresponds to a table, and edges rep-
resent joins between tables, labeled with the join column(s).
Figure 2 also highlights those tables with the highest ingest

rates. A fixed number (3 million) of Users move randomly
within a region, providing new UserLocations at sub-second

Figure 3: Wildfire Demo Live Screen.

intervals determined by a system parameter. An in-memory
hash-index keeps the latest UserLocation for a User. A
fixed number (10,000) of Stores at fixed locations in the re-
gion sell a different small subset of 100,000 products, each of
which is advertised by an Ad and each of which fits into one
of 31 broad categories. Each User has three UserInterests

in buying products from these categories (so UserInter-

ests table contains 9 M rows); these UserInterests and
the strength of interest are different for each User and are
pre-populated. Other system parameters, which the demo
viewer may modify, control the rates at which Ads are shown
to Users (5 secs. to 1 microsec.) and at what rate Users

make Purchases (10% to 70% of AdsShown). Users are ran-
domly partitioned, whereas Stores and Ads are replicated
at each partition. All other tables are co-partitioned with
the Users, based on the UserID.

3.1.2 Data Ingest (OLTP)
Each new UserLocation for a User is randomly generated

as an azimuth and distance from the last UserLocation,
without following a road network. These new UserLoca-

tions drive the highest ingest rates, in excess of 20 M rows
per sec. at the most frequent update rate (1 microsec.).

As these UserLocations are ingested, a complex analytics
query, ShowAds, runs continuously to determine which Ads to
show to each User next. The results of ShowAds, described
in Section 3.1.3 , are inserted into the AdsShown table. To
avoid bombardment of users with promotions, not every new
UserLocation results in an AdsShown insert, so its ingest rate
is significantly less than that of UserLocation.

Once an Ad is shown to a User, the User ”clicks through”
to purchase the product with some probability set by the

system parameter, causing an insert into the Purchases ta-
ble. That parameter therefore determines the relative size
of Purchases to AdsShown.

3.1.3 Complex Analytics (OLAP) Queries
Concurrent with these high ingest rates, Wildfire contin-

uously executes several complex analytics queries over the
latest data, both to summarize it and to trigger events such
as showing new promotions to users. The summarization
queries, detailed in Section 3.2, are displayed in the lower
two panes of the demo display. The query determining which
promotions to show to users, ShowAds, is far more complex.
It joins Ads having remaining budget (indexed in memory)
to tables Ads and Stores, then grids each Ad by its Store’s
location and Ad’s category that define a key for the Ad on
this grid. The current UserLocation (another in-memory in-
dex) and UserInterests for which Ads haven’t been shown
recently (determined using a third index) define the lookup
key over this grid. Each eligible Ad is then scored as a func-
tion of the precise distance from its Store to the current
UserLocation and a weighting of the UserInterest cate-
gories. This function simulates the output from a machine
learning model that would be continuously trained using ear-
lier Purchases, but implementation of that model training
is future work.

3.1.4 Setup
The demo runs the Wildfire prototype on three remote

2-socket servers with 14-core Intel Xeon E5-2683 proces-
sors (2GHz) with 384GB of RAM. The operating system is
Ubuntu 15.04 with Linux kernel 3.19.0-30. Each node stores
the data on, and reads it from, an Intel 750 Series SSD.

Each node runs one instance of our Wildfire engine and
a Spark Executor, as shown in Figure 1. The application
driver runs on one of the three nodes; it issues OLAP re-
quests to, and combines the results from, the Spark Execu-
tor on each node. The data for ingestion is generated and
inserted locally on each individual node. The demo user-
interface is accessed through a web-browser, since the nodes
are remote.

We pre-populate the Users, Stores, Ads, and UserInter-

ests tables of the application (see Figure 2). These tables
do not change after initial population, as Section 3.1 de-
scribes. The UserLocations, AdsShown, and Purchases ta-
bles grow as the demo runs.

3.2 What the Audience Sees
The demo screen is composed of four major panes, as

shown in Figure 3. The upper half of the screen illustrates
the ingest capabilities of Wildfire. The upper-left pane re-
ports the aggregated ingest throughput of the UserLoca-

tions table, as well as the throughput per node, every sec-
ond. The cardinalities of each table are shown in the upper-
right pane. The last four rows in this pane indicate the cardi-
nalities for the four pre-populated tables whose cardinalities
do not change during the demo. The first three rows in this
pane give the cardinalities of the tables whose cardinalities
do change due to the insertion of new rows. These cardi-
nalities are continuously combined from in-memory counts
maintained on each node, and are updated every second on
the demo screen.

The lower two panes of the display are dedicated to re-
porting summarization (analytics) queries that are run con-
tinuously over all the persisted data, including the recently
ingested data, while concurrently running the ingest queries.
The demo viewer may choose which query to run in each
pane. Each such query is a GROUP BY query that either
performs a SUM or AVERAGE, grouping the data by prod-
uct categories (lower-left pane, displayed as a bar graph)
or by U.S. county (lower-right pane, displayed as a heat
map). For example, the lower-left pane summarizes how
the remaining ad budget, total sales (purchases), total cost
of ads, etc. change per product category as we insert new
data. From movements in the height of these bars, the demo
viewer can readily discern this continuous analytics update
using new data, when high rates of ingest occur, and how
long it takes to (re-)run that query. The lower-right pane of
the screen has a heat map to indicate the rate of purchases
or remaining ad budget per county. Positioning the cursor
on a state causes a pop-up that enumerates each county and
the exact purchase total or remaining ad budget per county,
as shown in Figure 3 for the state of Utah.

At the bottom of the display, a narrow pane permits the
demo viewer to adjust the system parameters, such as the
frequency with which new UserLocations are generated for
each User, the frequency with which Ads are shown to Users,
and the click-through percentage for Purchases.

We start our demo with a low ingest rate and then grad-
ually increase this rate. This helps in observing how the
insert throughput of the system increases, how dramatically
the table cardinalities grow, and the results reported by the
OLAP queries change under varying ingest pressure.

After demonstrating how the system behaves under differ-
ent ingest rates, we will let the audience interact with our
user interface if they wish. They can change the ingest rates

further from the bottom of the screen, or choose different an-
alytics queries to run from the drop-down menu at the top of
the bar graph and heat map panes. Furthermore, they can
restart the cluster services with or without resetting table
data using the Reset or Restart buttons, respectively.

4. CONCLUSIONS
The Wildfire system demonstrates high-rate inserts (up to

20 million inserts per second on just 3 nodes) with concur-
rently executing analytics queries. The demo shows a Wild-
fire engine connected to a Spark Executor on each node to
issue analytics queries through Spark’s Data Sources API.
The connection to Spark exposes the analytics capabilities
of Wildfire to the entire Spark ecosystem, including Spark
SQL, graph processing, and machine learning.

This demo is a snapshot of work in progress. We are work-
ing on extending its integration into Spark SQL, particularly
on extensions to Spark’s Catalyst optimizer to perform more
complex push-down analysis, and generating compensation
plans for the remaining portions of the analytics queries that
are not pushed down into Wildfire. In addition, we are ex-
posing the OLTP interface of the Wildfire engine to Spark,
so that applications running inside Spark have access to the
full HTAP functionality. Lastly, we are adding ACID trans-
actions to the Wildfire engine.

5. REFERENCES
[1] Apache Parquet. https://parquet.apache.org/.

[2] Apache Spark. http://spark.apache.org/.

[3] A. Ailamaki, D. J. DeWitt, M. D. Hill, and
M. Skounakis. Weaving Relations for Cache
Performance. In VLDB, pages 169–180, 2001.

[4] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu,
J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin,
A. Ghodsi, and M. Zaharia. Spark SQL: Relational
Data Processing in Spark. In SIGMOD, pages
1383–1394, 2015.

[5] R. Barber, G. Lohman, I. Pandis, V. Raman, R. Sidle,
G. Attaluri, N. Chainani, S. Lightstone, and
D. Sharpe. Memory Efficient Hash Joins. PVLDB,
8(4):353–364, 2014.

[6] P. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:
Hyper-Pipelining Query Execution. In CIDR, 2005.

[7] F. Färber, N. May, W. Lehner, P. Große, I. Müller,
H. Rauhe, and J. Dees. The SAP HANA Database –
An Architecture Overview. IEEE DEBull, 35(1), 2012.

[8] A. Lamb, M. Fuller, R. Varadarajan, N. Tran,
B. Vandiver, L. Doshi, and C. Bear. The Vertica
Analytic Database: C-store 7 Years Later. PVLDB,
5(12):1790–1801, 2012.

[9] V. Raman, G. Attaluri, R. Barber, N. Chainani,
D. Kalmuk, V. KulandaiSamy, J. Leenstra,
S. Lightstone, S. Liu, G. M. Lohman, T. Malkemus,
R. Mueller, I. Pandis, B. Schiefer, D. Sharpe, R. Sidle,
A. Storm, and L. Zhang. DB2 with BLU Acceleration:
So Much More than Just a Column Store. PVLDB,
6:1080–1091, 2013.

[10] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing. In
NSDI, pages 15–28, 2012.

	1 Introduction
	2 Wildfire Architecture
	2.1 Wildfire Engine: Storage and Processing
	2.2 Integration with Spark

	3 Demo
	3.1 Application
	3.1.1 Schema
	3.1.2 Data Ingest (OLTP)
	3.1.3 Complex Analytics (OLAP) Queries
	3.1.4 Setup

	3.2 What the Audience Sees

	4 Conclusions
	5 References

