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ABSTRACT
Social influence analysis on microblogs, such as Twitter, has been
playing a crucial role in online advertising and brand management.
While most previous influence analysis schemes rely only on the
links between users to find key influencers, they omit the important
text content created by the users. As a result, there is no way to
differentiate the social influence in different aspects of life (topics).
Although a few prior works do support topic-specific influence anal-
ysis, they either separate the analysis of content from that of network
structure, or assume that content is the only cause of links, which is
clearly an inappropriate assumption for microblog networks.

To address the limitations of the previous approaches, we pro-
pose a novel Followship-LDA (FLDA) model, which integrates both
content topic discovery and social influence analysis in the same
generative process. This model properly captures the content-related
and content-independent reasons why a user follows another in a mi-
croblog network. We demonstrate that FLDA produces results with
significantly better precision than existing approaches. Furthermore,
we propose a distributed Gibbs sampling algorithm for FLDA, and
demonstrate that it provides excellent scalability on large clusters.
Finally, we incorporate the FLDA model in a general search frame-
work for topic-specific influencers. A user freely expresses his/her
interest by typing a few keywords, the search framework will return
a ranked list of key influencers that satisfy the user’s interest.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

1. INTRODUCTION
Microblogging services, such as Twitter (twitter.com), have

gained tremendous popularity in recent years. Using these services,
a user can publish a short message, called a tweet, and follow other
users to keep up with their latest updates. The “follow" relationship
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(or followship) is directed, with information only flowing from the
followee to the follower. A large amount of microblog data has been
accumulated over time. For example, according to a March 2012
report, Twitter had over 500 million registered users creating over
340 million tweets daily [27].

The rich text and social information in microblogs has become a
popular resource for marketing campaigns to monitor the opinions
of consumers on particular products and to launch viral advertising.
Identifying key influencers in microblogs is required for such mar-
keting activities. Although a lot of work has been done on social
influence analysis, most of these studies [8, 16, 17, 18, 9] infer influ-
ence only from the network structure, while ignoring the valuable
text content that the users created. As a result, the learned influence
of each user is only global, with no way to assess the influence in a
particular aspect of life (topic). For example, no one can deny that
President Obama is a key influencer in general. But his impact is
most prominent in politics. In other subjects, like choosing digital
cameras, he is unlikely to be influential. Clearly, topic-specific influ-
ence analysis provides a more detailed influence portfolio for a user,
which is critical for effective marketing.

A number of PageRank-based methods, such as Topic-Sensitive
PageRank [15] and TwitterRank [28], are able to compute per-topic
influence ranks, but they require the topics to be already created
either manually or by a topic modeling preprocess. As content and
links are related to each other in a microblog network, the separation
between the analysis on content and the analysis on the network
structure usually leads to inferior performance, compared to those
methods, like Link-LDA [10], which can detect topics and infer
influences at the same time. However, Link-LDA, as originally de-
signed for citation networks, assumes that the generation of links is
purely based on the content. This assumption clearly does not apply
to microblogs, since it is prevalent for a user to follow celebrities
simply because of their fame and stardom, with nothing to do with
what he/she actually tweets about.

To correctly model topic-specific influence on microblogs, we pro-
pose a new Bernoulli-Multinomial mixture model, called Followship-
LDA (FLDA). This model contains two levels of mixtures: an
upper-level Bernoulli mixture with one of the components being a
Multinomial mixture. FLDA jointly models text and followship in
the same generative process. Furthermore, it is able to differentiate
the different reasons why a user follows another. Sometimes, A
follows B because they tweet in similar topics. This type of follow-
ship is content-based. In other times, A follows B purely because
B is a pop star. In this case, the followship is content-independent.
Using FLDA, we can not only learn the per-user preference of fol-
lowing by content or not, but also remove the stardom effect when
computing the topic-specific influence. Our empirical study on two
popular microblog datasets, Twitter and Tencent Weibo, shows that



the FLDA model produces significantly higher quality results than
the prior arts.

Gibbs sampling is a widely used approach to approximate target
distributions for LDA-like Bayesian models. To meet the com-
putational challenge posed by rapid growing microblog data, we
propose a distributed Gibbs sampling algorithm which significantly
speeds up the Gibbs sampling process. For example, a sequential
job that would take 21 days on a high end server can finish in 1.5
days using the distributed algorithm on a cluster of 27 commodity
machines! We chose to implement the distributed Gibbs sampling
on top of the Spark cluster computing framework [29]. Several
alternative platforms [7, 3, 5] have been proposed to address the
problem of machine-learning at scale. Spark is such a parallel pro-
gramming framework, which supports efficient iterative algorithms
on datasets stored in the aggregate memory of a cluster. We pick
Spark as the underlying framework, because of its extreme flexibility
as far as cluster programming is concerned. In addition to machine-
learning algorithms, which were the main motivation behind the
design of Spark, various data-parallel applications can be expressed
and executed efficiently using Spark; examples include MapReduce,
Pregel[20], HaLoop[7] and many others(see [29]).

Finally, we propose a general search framework for topic-specific
key influencers, which can flexibly plug in various topic-specific
influence methods, including FLDA, Link-LDA, Topic-Sensitive
PageRank and TwitterRank. A user just needs to enter a set of
keywords to describe his/her interest, the search framework will
infer a topic distribution from the keywords and return a ranked list
of influencers in the corresponding topic combination.

In particular, this paper makes the following contributions:

• We propose a new Bayesian Bernoulli-Multinomial mixture
model, FLDA, to jointly model both content and links in the
same generative process, while separating the various reasons
why a user follows another in a microblog network.

• We discuss and implement a distributed Gibbs-sampling tech-
nique for training FLDA over large clusters.

• We propose a general search framework for finding topic-
specific key influencers with various models (including FLDA,
Link-LDA and PageRank variants).

• Through extensive experimentation with two large real datasets,
we demonstrate (a) the substantial better precision achieved
by FLDA than previous work, (b) the excellent scalability
of the distributed Gibbs-sampling technique over large clus-
ters and (c) various interesting insights gained from the real
datasets.

The rest of this paper is organized as follows. In Section 2,
we describe the related work. The FLDA model is introduced
in Section 3. Section 4 presents the distributed Gibbs sampling
algorithm for FLDA, while Section 5 provides an overview of the
general search framework for topic-specific key influencers. In
Section 6, we present our experimental results. Finally we conclude
the paper in Section 7.

2. RELATED WORK
Much work has been done on influence analysis in social net-

works. Kempe et. al. pioneered the Linear Threshold Model and
Independent Cascade Model to explain the spread of influence in
a social network and abstracted the key influencer problem into a
maximization problem [17]. Along with subsequent works, such as
[18] and [9], these methods are only after the identification of global

Figure 1: Followship-LDA

influencers instead of influencers for specific topics. Although Bar-
bieri et. al. extended the Linear Threshold Model and Independent
Cascade Model to be topic-aware [2], the topics are still obtained
based on the network structure, while totally ignoring the valuable
content information.

Given the popularity of PageRank [6], it is only natural to ex-
tend it for topical influence analysis. Topic-Sensitive PageRank
(TSPR) [15] was such an extension for computing per-topic PageR-
ank scores. TSPR biases the computation of PageRank by replacing
the classic PageRank’s uniform teleport vector with topic-specific
ones. However, it requires a separate preprocess to create topics
and provide per-topic teleport vectors. This preprocess can be done
by either utilizing existing manually categorized topic hierarchies,
such as suggested in [15], or applying well-known topic modeling
methods like LDA [4] on the text content, as suggested in [28].

In [28], TwitterRank was proposed to find topic-level influencers
on Twitter. A set of topics is first produced by LDA on the tweets.
Then TwitterRank applies a method similar to TSPR to compute
the per-topic influence rank. The transition probability between
two users in TwitterRank is defined based on the number of tweets
published by different followees and the topical similarity between
the follower and the followee.

In the context of documents and citations (or hyperlinks), a mixed
membership model was proposed in [10] to jointly model text and
citations in the same generative process, which we will refer to as
Link-LDA. In the generative process of Link-LDA, for a given doc-
ument, a citation to another document is created in exactly the same
way as a word is created, and they share the same per-document
topic distribution. If we aggregate all the tweets for each user, and
treat a user as a document and his/her followships to other users as
citations, then Link-LDA can be applied to the microblog network,
to learn the probability of each microblog user u being followed by
someone given a specific topic t. This probability can be used to
measure u’s influence on the topic t. Link-PLSA-LDA [22] is an
extension to Link-LDA, but also assumes that the cause of links is
purely based on the text content.

In [26], Tang et al. proposed a Topical Affinity Propagation (TAP)
model for topic-level social influence. But, similar to TSPR and
TwitterRank, TAP requires a separate topic modeling approach to
be applied first to derive a set of topics on the content.

In [24], Pal et. al. proposed to identify topical authorities by
clustering users using 15 carefully selected features and then rank
users within each cluster. Cognos [11] heavily relies on the manually
curated Twitter “Lists" to infer topics of expertise and rank experts
for different topics. Liu et al. introduced a graphical model to learn
influence in the context of general heterogeneous networks [19].

3. FOLLOWSHIP-LDA
The existing works on topic-specific influence analysis can be

categorized into two camps. The first camp, represented by TSPR
and TwitterRank, completely detach the topic detection process



Table 1: Notations used in FLDA

Notation Description
θ Per–user topic distribution
ϕ Per-topic word distribution
σ Per-topic followee distribution
π Multinomial distribution over followees
µ Per-user Bernoulli distribution over indicators

α, β, γ, ε, ρ
Parameters of the Dirichlet (Beta) priors on
Multinomial (Bernoulli) distributions

w Word identity
e Followee identity
z Identity of the topic of a word
x Identity of the topic of a followee

y
Binary indicator of whether a followship is
related to the content of tweets

M Number of unique users
V Number of words in the vocabulary
K Number of unique topics
Nm Number of words in the tweets of user m
Lm Number of followees for user m

Choose 𝜋 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝜀  

For each topic 𝑘 = 1, … , 𝐾 

Choose 𝜑𝑘  ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝛽  

Choose 𝜎𝑘  ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝛾  

For each user 𝑚 = 1, … , 𝑀 

Choose 𝜃𝑚 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝛼  

For the 𝑛𝑡ℎ word of the 𝑚𝑡ℎ user, where 𝑛 ∈ 1, … , 𝑁𝑚
 

Choose a topic 𝑧𝑚,𝑛 ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝜃𝑚 , where 𝑧𝑚,𝑛 ∈ 1, … , 𝐾  

Choose a word 𝑤𝑚,𝑛 ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝜑𝑧𝑚,𝑛
, where 𝑤𝑚,𝑛 ∈ 1, … , 𝑉   

Choose 𝜇𝑚 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝜌  

For the 𝑙𝑡ℎ link of the 𝑚𝑡ℎ user, where 𝑙 ∈ 1, … , 𝐿𝑚  

 Choose a topic 𝑥𝑚,𝑙 ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝜃𝑚 , where 𝑥𝑚,𝑙 ∈ 1, … , 𝐾  

 Choose an indicator 𝑦𝑚,𝑙 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝜇𝑚 , where 𝑦𝑚,𝑙 ∈ 0,1  

 If 𝑦𝑚,𝑙 = 0 then 

 Choose a followee 𝑒𝑚,𝑙 ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝜋 , where 𝑒𝑚,𝑙 ∈ 1, … , 𝑀  

Else if 𝑦𝑚,𝑙 = 1 then 

 Choose a followee 𝑒𝑚,𝑙 ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝜎𝑥𝑚,𝑙
, where 𝑒𝑚,𝑙 ∈ 1, … , 𝑀  

Figure 2: Generative process for Followship-LDA
from the influence analysis. As we will show later in this paper,
these methods perform inferior to those approaches in the second
camp that integrate text topic discovery and social influence analysis
in the same model. Link-LDA represents the best prior work in
the second camp. However, it was originally developed for citation
and hyperlink networks. In Link-LDA, the topic assignments for
words and for citations are drawn from the same topic distribution
θ, assuming that the content of a document is topically related to
that of its cited documents. This is a very reasonable assumption for
citation/hyperlink networks, since an author most definitely chooses
the topically related documents to cite. But this assumption no
longer applies to microblog networks. There are many reasons for
a microblog user to follow another. Some are content-related (they
tweet in similar topics) and others are not. For example, President
Obama has a massive number of followers in Twitter, but some of
them have never tweeted about politics at all. It is very common
to see users follow celebrities, not because they share any topic
of interest, but just because they are famous and popular. Clearly,
Link-LDA is not able to capture these non-content related factors in
the influence analysis.

To correctly model the topics and social influence in microblog
networks, we propose Followship-LDA, abbreviated as FLDA. The
graphical model for FLDA is depicted in Figure 1, with the notations
described in Table 1. The generative process of a user’s content and
links/followees is summarized in Figure 2.

For the generation of content, each user is viewed as a mixture
of latent topics from which words are drawn, similar to LDA. To
be more specific, for the mth user, we first pick the per-user topic
distribution θm from a Dirichlet prior with parameter α. Then, to

generate the nth word for the tweets of the user, a topic zm,n is
first chosen from θm. Finally, the word wm,n is picked from the
per-topic word distribution ϕzm,n .

On the other hand, the links of the mth user are generated by a
much more complex three-stage stochastic process. First of all, every
user has a unique preference of following others based on content or
non-content reasons. The Bernoulli distribution µm characterizes
this per-user preference. As a result, for the lth link/followee of
the mth user, we first consult µm to decide on the value of the
binary variable ym,l. ym,l = 1 indicates that the link creation is
based on the user’s content, whereas ym,l = 0 means that content
has nothing to do with the link. Now if ym,l = 1, we use the
same topic distribution θm to pick a topic xm,n of interest, just as
in the content generation part of FLDA. Afterward, we choose a
followee em,l who well addresses the picked topic from the per-
topic followee distribution σxm,l . When ym,l = 0, the user is
following someone for non-content reasons. We use π to capture
this probability distribution. In particular, a followee em,l is chosen
from the Multinomial distribution π.

Note that FLDA is a much more complex mixture model than
LDA and Link-LDA. We call it a Bernoulli-Multinomial mixture
model, because the model consists of two levels of mixtures: an
upper-level Bernoulli mixture that includes a Multinomial mixture
underneath. More specifically, each followee e of a user m is
drawn from a Bernoulli mixture of two components. One of the
mixture components is a Multinomial distribution with parameter
π, corresponding to the global popularity. The other component,
however, is itself a mixture of K Multinomial components, each
corresponding to a topic. The distribution of followee e of userm is:
p(e|µ, π, θ, σ) = µm,0πe+µm,1

∑K
k=1 θm,kσk,e, where µ are the

outer mixing proportions, and θ are the inner mixing proportions.
The various probability distributions we can learn from the FLDA

model characterize the different factors that affect the textual and
social structures of a microblog network. For a user m, the probabil-
ity θz|m represents the likelihood of m tweeting about topic z, and
µy|m is the probability of the reason indicator y (content-related or
not) why the user m follows others. For content of tweets, ϕw|z
gives the probability of word w belonging to topic z. In terms of
links, σe|x captures the likelihood of a user e being followed by
someone for a given topic x. This value essentially quantifies the
influence of user e on x and is exactly the topic-specific influence
score we want to compute. Finally, πe indicates the probability of a
user e being followed for any non-content reason. In some sense,
πe is measuring the global popularity of e. We formally define:

Topic-Specific Influence: the influence of user e on topic x is
measured by σe|x which is the probability of e being followed for
topic x in the FLDA model.

Content-Independent Popularity: the content-independent popu-
larity of user e is measured by πe which is the probability of e being
followed for any content-independent reason in the FLDA model.

3.1 Gibbs Sampling for FLDA
To learn the various distributions in the FLDA model, we use

collapsed Gibbs sampling. However, the derivation of posterior
distributions for Gibbs sampling in FLDA is complicated by the fact
that followee distribution is a joint distribution of two-level mixtures.
As a result, we need to compute the joint distribution of x and y in
the Gibbs sampling process. The posterior distributions for Gibbs
sampling in FLDA are given in the equations below. The detailed
derivation of these equations is provided in the appendix.

p(zm,n|z−(m,n), x, w, e, y, α, β, γ, ε, ρ)

∝
(c

−(m,n)
zm,n,m,∗+dzm,n,m,∗,∗+αzm,n )(c

−(m,n)
zm,n,∗,wm,n+βwm,n )

c
−(m,n)
zm,n,∗,∗+

∑W
i=1 βi

(1)



p(xm,l, ym,l = 0|y−(m,l), x−(m,l), w, z, e, α, β, γ, ε, ρ)

∝ (cxm,l,m,∗ + d
−(m,l)
xm,l,m,∗,∗ + αxm,l )(d

−(m,l)
∗,m,∗,0 + ρ0)

×
d
−(m,l)
∗,∗,em,l,0

+εem,l

d
−(m,l)
∗,∗,∗,0+

∑M
i=1 εi

(2)

p(xm,l, ym,l = 1|y−(m,l), x−(m,l), w, z, e, α, β, γ, ε, ρ)

∝ (cxm,l,m,∗ + d
−(m,l)
xm,l,m,∗,∗ + αxm,l )(d

−(m,l)
∗,m,∗,1 + ρ1)

×
d
−(m,l)
xm,l,∗,em,l,1

+γem,l

d
−(m,l)
xm,l,∗,∗,1

+
∑M

i=1 γi
(3)

In the above equations, zm,n denotes the topic of the nth word
for the mth user, and ym,l is the reason indicator (content or non-
content) of the lth link for the mth user. wm,n, xm,l and em,l
follow similar definitions. Let z−(m,n) denote the topics for all
words except zm,n, and y−(m,l) and x−(m,l) follow an analogous
definition. We define cz,m,w as the number of times word w is
assigned to topic z for the mth user, and dx,m,e,y as the number of
times link e is assigned to topic x for the mth user with indicator
y. If any of the dimensions in above notations is not limited to
a specific value, we use ∗ to denote. Essentially, ∗ represents an
aggregation on the corresponding dimension. For example, cz,∗,w is
the total number of times word w is assigned to topic z in the entire
document collection. Finally, let c−(m,n)

z,m,w be the same meaning of
cz,m,w only with the nth word for themth user excluded. Similarly,
d
−(m,l)
x,m,e,y is defined in the same way as dx,m,e,y only without the

count for the lth link for the mth user.
After the sampling algorithm has run for an appropriate number of

iterations (until the chain has converged to a stationary distribution),
the estimates for the parameters of θ, ϕ, µ, σ and π can be obtained
via the following equations:

θx|m =
cx,m,∗ + dx,m,∗,∗ + αx

c∗,m,∗ + d∗,m,∗,∗ +
∑K
i=1 αi

(4)

ϕw|z =
cz,∗,w + βw

cz,∗,∗ +
∑W
i=1 βi

(5)

µy|m =
d∗,m,∗,y + ρy

d∗,m,∗,∗ + ρ0 + ρ1
(6)

σe|x =
dx,∗,e,1 + γe

dx,∗,∗,1 +
∑M
i=1 γi

(7)

πe =
d∗,∗,e,0 + εe

d∗,∗,∗,0 +
∑M
i=1 εi

(8)

4. SCALABLE GIBBS SAMPLING FOR FLDA
The rapid growth of microblog data poses a significant challenge

for influence analysis in terms of both computation time and mem-
ory requirements. Scalable solutions that can take advantage of the
computation power and memory capacity of multiple computers are
becoming more crucial. However, the Gibbs sampling updates of
FLDA shown in equations (1)-(3) are inherently sequential, which
makes it very difficult to parallelize the computation. However,
given the abundance of words and the large number of links in a
microblog dataset, the dependency between different topic assign-
ments or indicator assignments in equations (1)-(3) is relatively
weak. As a result, we can relax the sequential requirement of the
Gibbs sampling updates and distribute the computation to a number
of processes running in parallel. In fact, similar observations were
used to develop approximate parallel/distributed Gibbs sampling

1 val baseRDD = sc. textFile ("hdfs://master/baseData.log")
2 val lowerRDD = lines.map(String. toLowerCase _ )
3 val regexB = sc . broadcast (REGEX)
4 val nMatches = sc .accumulator(0)
5 lowerRDD.foreach (s =>
6 if ( s .matches(regexB.value) )
7 nMatches += 1
8 )
9 println ("#Matches is:\%d".format(nMatches.value))

Listing 1: Sample Spark code.

algorithm for LDA in [23], [25] and [1]. We implemented our dis-
tributed FLDA Gibbs sampling algorithm on a distributed cluster
computing framework called Spark [29]. Before the details of our
distributed algorithm, we first provide a brief overview of Spark.

4.1 Spark Overview
Spark is a large-scale distributed processing framework specif-

ically targeted at machine-learning iterative workloads. It uses a
functional programming paradigm, and applies it on large clusters
by providing a fault-tolerant implementation of distributed data sets
called Resilient Distributed Data (RDD). RDDs can either reside in
the aggregate main-memory of the cluster, or in efficiently serialized
disk blocks. Especially for iterative processing, the opportunity to
store the data in main-memory can significantly speed up process-
ing. An RDD contains immutable data; i.e. it cannot be modified,
however, a new RDD can be constructed by transforming an existing
RDD.

The Spark runtime consists of a single coordinator node and
multiple worker nodes. The coordinator keeps track of how to
re-construct any partition of the RDD when any of the workers fails.

Computation in Spark is expressed using functional transforma-
tions over RDDs. For instance, assume that we have a log file,
and that we want to transform each string to lower case. Consider
the first two lines of actual Spark code in Listing 1: The first line
of code defines an RDD of strings, called baseRDD, over a file
“baseData.log” stored in a Hadoop Distributed FileSystem; each
text line of the log file, corresponds to a string of the RDD. The
second line of code, uses the map function to transform each string
in baseRDD through the function String.toLowerCase. The
transformation happens in parallel on all the workers, and defines a
new RDD, called lowerRDD that contains the lower-case string of
each string in baseRDD.

Spark’s programming model provides additionally two useful
abstractions: broadcast variables and accumulators. Broadcast vari-
ables are initialized at the coordinator node, and made available to
all worker nodes, through efficient network broadcast algorithms.
Spark chooses a topology-aware network-efficient algorithm to dis-
seminate the data. Line 3 in Listing 1 initializes a broadcast variable
called regexB to a regular expression (called REGEX). In Line 6,
this value is used inside the foreach loop to check if any of the
lines in the RDD called lowerRDD matches that regular expression.
Note that broadcast variables are immutable, read-only, objects and
cannot be modified by the workers.

Similar to a broadcast variable, an accumulator is also a variable
that is initialized on the coordinator node, and sent to all the worker
nodes. However, unlike a broadcast variable, an accumulator is
mutable and can be used to aggregate results of computations at
worker nodes. Worker nodes may update the state of the accumulator
(usually just by incrementing it, or by using computations such as
count and sum). At the end of the RDD transformation, each worker
node sends its locally-updated accumulator back to the coordinator
node, where all the accumulators are combined (using either a
default or user-supplied combine function) into a final result. In



our example listing, nMatches is an accumulator that is locally
incremented by all workers (line 7) before it is globally aggregated
(through an implicit addition over all the partial results in line 9).

4.2 Distributed FLDA using Spark
We now describe how we use the Spark framework to implement

the distributed Gibbs sampling algorithm for FLDA. In particular
we discuss technical issues that distributed approaches encounter,
and propose solutions and justify various implementation choices.

First, we define the notion of a user object. Each user object
corresponds to a single user m, and holds information about the
content (i.e. the actual words used by m) and the link structure (i.e.
other users thatm is following). For each wordw and link e, the user
object holds the last topic assignment, i.e. the corresponding latent
variables z and x. For each link additionally it holds the last binary
state (i.e. content-related or content-independent) for the y latent
variable. Finally, each user object holds the user-local counters
dx,m,e,y , cx,m,w, as well as all aggregates of these (like d∗,m,∗,∗)
that show up in equations (1)-(3). Note that the corresponding local
aggregates always have a m index in the subscript. Such aggregates
are entirely local to a user and need not be shared.

Note that in addition to the user-local counters and aggregates,
equations (1)-(3) require global aggregates (like dx,∗,∗,1) over all
the users. Such global aggregates always have a ∗ instead of m in
the corresponding subscript index.

Based on previous work ([25]), the global aggregates are not
stored in the user object, but are computed periodically and dis-
tributed to all workers through an accumulator. The idea is that
such aggregates should change slowly and thus any inaccuracies
(because of the periodic synchronization) shouldn’t affect the quality
of the final result. Although this assumption has been shown to work
well in practice for basic LDA, it is not evidently clear whether it
works for FLDA. A big difference is that the global aggregates, that
distributed LDA periodically needs to synchronize, are only per doc-
ument terms and thus their count is limited (especially after typical
pre-processing, like stop-word removal or stemming). However,
distributing FLDA requires the periodic synchronization of orders
of magnitude more aggregates;not only per document terms but also
per user terms (and typically there are many more users). In the
experiments, we show that for real datasets with millions of users,
distributing FLDA still works very well.

Second, we define a mapping function, GibbsSampleMap,
which takes as input one such user object, runs Gibbs sampling
once and returns a new user object. In particular, this function goes
over all the words and links in the object and (a) “undoes” the effects
of the last assignment to the latent variables x, y and z (by properly
decreasing the corresponding counts dx,m,e,y , cx,m,w as well as all
the corresponding local and global aggregates), (b) computes the
new probabilities for the latent variables x, y and z according to
the equations (1)-(3), and finally (c) assigns new latent variables
according to these probabilities, and increases the corresponding
counts and all user-local and global aggregates.

Putting all these together, first we initialize an RDD of user ob-
jects by (a) properly parsing and co-grouping the content and the
link structure for each user, (b) randomly initializing the latent vari-
able assignments and (c) computing the corresponding user-local
counters and aggregates based on these initial assignments. Then
we run a number of iterations over the RDD, where each iteration
maps all user objects (in parallel) to new user objects using the
GibbsSampleMap function we defined above. At the beginning
of each iteration we accumulate and broadcast the global aggregates.
We note, that each worker has its each own copy of the global ag-
gregates, that the mapping function modifies. Thus although each

worker starts with the same global aggregates, as user objects are
transformed through the mapping functions, the workers’ copies of
the global aggregates get “out-of-sync”, until the start of the next
iteration when new global aggregates are computed and broadcasted.
Finally, when all the iterations are done, we use equations (4)-(8) to
estimate the parameters θ, ϕ, µ, σ and π of the FLDA model.

4.3 Discussion
The distributed Gibbs sampling algorithm is quite generic and

could be used to train other Bayesian models as well. We empha-
size that the final result depends on the assumptions made in [23]
and [25]. In particular, the global-aggregates change slowly and
thus are not updated continuously, but only once every iteration
(or even less often and asynchronously in the case of [25]). This
choice does not seem to affect the final result of topic models like
LDA. The literature shows that the quality of the result (in terms
of perplexity or log-likelihood) is equivalent to that from a purely
sequential implementation (where the global aggregates are always
updated). We empirically show that the same holds for FLDA. We
emphasize that it is not immediately clear whether this approach
works for FLDA, since it requires the synchronization of order of
magnitude more global aggregates. In Section 6 we compare the
resulting user rankings produced by serial and distributed version
of the algorithm and show virtually no difference. Finally we note
that in the experiments with various real datasets, we observed that
computing and synchronizing the global-aggregates just once every
ten iterations doesn’t seem to affect the quality of the results. It is an
open problem exactly how infrequent such global updates can be.

Although Spark provides a lineage based fault-recovery mech-
anism, we chose to complement it using manual checkpoints for
every ten iterations. The reason, is that replaying all the iterations
from the beginning for every failed worker (although infrequent)
takes quite some time. With the checkpoints, we guarantee that at
most ten iterations will have to be replayed in case of failures. Our
choice was also based on the fact that the cost of a checkpoint was
negligible (a small fraction of the time required to do an iteration).

Finally, we took extra care for the correctness of the distributed
Monte-Carlo simulation. Since multiple workers are spawned at
roughly the same time, typical random-number generators are seeded
with similar (or even exactly the same) seeds. This introduces corre-
lations between the pseudo random numbers generated across the
workers. In extreme cases, two workers could “see” exactly the
same stream of pseudo-random numbers. Such correlation jeopar-
dizes the quality of the returned results. To guarantee correctness of
the distributed simulation, we use the technique discussed in [14]
for generating multiple streams of uniform numbers that are prov-
ably independent. In particular, we assign a unique stream for each
RDD block and iteration pair (i.e. if we have 100 RDD blocks and
500 iterations, we have 100× 500 independent streams of random
numbers). This approach guarantees not only the correctness of the
simulation, but also repeatability; every time we run the simulation
with the same initial seed we get exactly the same results, regardless
of the number of workers or possible worker failures.

5. QUERYING TOPICAL INFLUENCERS
Finally, we propose a general search framework for topic-specific

key influencers, called SKIT. Inspired by the popular search engine
framework, SKIT allows a user to freely express his/her interests by
typing a set of keywords. Then, SKIT returns an ordered list of key
influencers by their influence scores that satisfy the user’s intent.

SKIT flexibly allows plugging in different topical influence meth-
ods. All that it needs from the underlying influence analysis are
(a) the derivation of interested topics from the query keywords, and



Table 2: Statistics of Experimental Datasets.

Dataset # users # dist. words # total words # links
Twitter 1.76 M 159 K 2363 M 183 M
Weibo 2.33 M 714 K 492 M 51 M

(b) the per-topic influence scores for every microblog user. More
specifically, given a set of key words as a query q, SKIT first de-
rives a weight W (t, q) for each topic t in the set of all topics T ,
indicating the likelihood of topic t being represented by query q.
Then, utilizing the learned per-topic influence score for each user
INFL(t, u), the final influence score INFL(q, u) for a user u given
a query q is computed as

INFL(q, u) =
∑
t∈T

W (t, q) · INFL(t, u). (9)

Finally, the users are returned in decreasing order of their influence
scores INFL(q, u).

When our FLDA model is used as the underlying topic-specific
influence analysis method, the probability distributions θz|m and
σe|x are produced as part of the results. Here, θz|m represents the
probability of topic z given user m, and σe|x is the probability of
user e being followed by someone given topic x. If we treat a query
q as a new user, we can use the folding-in [13] or the variational
inference [25] technique on FLDA to quickly learn θz=t|m=q , the
probability of topic t given the query q, and use this value asW (t, q)
in Equation (9). On the other hand, the per-topic influence score
INFL(t, u) for each user can be quantified by σe=u|x=t.

Besides FLDA, our flexible SKIT search framework can also
easily plug in Link-LDA, TSPR and TwitterRank. The folding-in
and the variational inference techniques equally apply to Link-LDA
and LDA, if LDA is used in the topic modeling preprocess for
TSPR and TwitterRank, to compute W (t, q). The definition of
INFL(t, u) for Link-LDA is the same as in FLDA. For both TSPR
and TwitterRank, INFL(t, u) is simply the PageRank score for user
u and topic t.

6. EXPERIMENTS
In this section, we start with evaluating the effectiveness of our

FLDA model on two microblog datasets, Twitter and Tencent Weibo.
On the Twitter dataset, we give examples of topics and influencers
found by the FLDA model, then we use the Tencent Weibo dataset to
systematically compare FLDA with a number of existing approaches
including TSPR, TwitterRank and Link-LDA. Finally, we demon-
strate the scalability of the distributed Gibbs sampling algorithm,
and show that it produces results with indistinguishable quality as
the sequential algorithm.

Experiment Setup. The sequential FLDA Gibbs sampling al-
gorithm was run on an 4-core Intel Xeon (X5672) 64-bit 3.2GHz
server with 192GB RAM. For distributed FLDA Gibbs sampling,
we used a cluster of 27 IBM System x iDataPlex dx340 servers.
Each server consisted of two quad-core Intel Xeon (E5540) 64-bit
2.5GHz processors, 32GB RAM, and interconnected using 1GB
Ethernet. We reserved one server as the Spark coordinator, and use
the remaining ones for workers. Each machine was configured to
run up to 8 concurrent workers. By default, we used 200 workers
for distributed FLDA.

6.1 Effectiveness on Twitter Dataset
We first evaluate our FLDA model on a Twitter dataset1, crawled

between October 2009 and January 2010. The raw dataset consists
1This dataset was crawled in a BSF manner with the top 1000 users in
twitterholic.com as the seeds.

of roughly half a terabyte of text and link information. The basic
statistics of this dataset are given in Table 2. We used the tokenizer
from the TweetNLP project [12] in order to improve the accuracy
of the recognized terms in the noisy text. We tried to further reduce
the inherent noise of tweets, by removing terms that appear in less
than 50 tweets. We set the number of topics to 100 and run the
distributed FLDA Gibbs sampling for 500 iterations. All the priors
were set to 0.1 except ρ which was set to 1. These settings are fairly
typical for LDA-based approaches and their tuning is beyond the
scope of this paper.

Table 3 shows some of the resulting topics with their top keywords
and influencers. We named these topics to simplify the presenta-
tion. Intuitively, it is clear that the influencers are very relevant to
the corresponding topics. For example, one would expect O’Reily
publishers, Gartner research, and popular software bloggers to be
influential for an IT-related topic. Just as one would expect school
age kids to be influenced by pop stars. Some of the findings are in-
sightful. For example, Australians seem to be particularly influenced
by comedians. While the first person in the list is Prime Minister of
Australia (at the time of the crawl), the following three are comics.

FLDA separated the “globally” popular users from the content-
specific influencers, and elected that 15% of all links were content-
independent. In other words, 15% of the time, these popular users
were followed regardless of what people tweet about. By compar-
ison, the largest topic was associated with less than 2.5% of all
links. The top five globally popular users detected by FLDA were:
Pete Wentz (singer), Ashton Kutcher (actor), Greg Grunberg (actor,
author of Yowza mobile app), Britney Spears (singer), and Ellen
DeGeneres (comedian, TV host). In comparison, the top five most-
followed Twitter accounts were: Barack Obama, Ashton Kutcher,
Britney Spears, Ellen DeGeneres, Shaquille OŠNeal (basketball
player). Although President Obama was most followed, we found
his impact was most prominent in politics, which was topic-related.
Similarly, the basketball star Shaquille O’Neal was mostly followed,
due to his impact in basketball. FLDA can correctly identify topic-
specific influence from the content-independent popularity.

There were a number of similar topics produced by both FLDA
and Link-LDA. Table 4 compares the top five influencers from
FLDA and Link-LDA for a few example topics. As shown from the
table, FLDA produced dramatically better results than Link-LDA.
For example, the “Jobs" topic produced by FLDA and Link-LDA
had virtually the same top-10 keywords. The top five influencers
identified by FLDA were all popular job-search websites, whereas
the influencers found by Link-LDA were mostly tech bloggers.
Upon inspection of their tweets it seems clear that the Link-LDA list
was much less relevant to the job search topic. As another example,
on the “Music” topic, FLDA successfully identified popular music
media as influencers, whereas Link-LDA misidentified Club Ubuntu
and a consultant as influencers in the music topic.

Naturally, such anecdotal evidence is very hard to generalize and
quantify. Luckily, 2012 KDD Cup provided us with the data needed
to objectively measure the quality of FLDA and other approaches,
as we describe next.

6.2 Effectiveness on Tencent Weibo Dataset
In this section, we systematically evaluate the effectiveness of

our FLDA model on a sample dataset from the popular Chinese
microblog site – Tencent Weibo (t.qq.com).

This Tencent Weibo dataset is released by KDD Cup 20122. The
basic statistics of this dataset 3 are given in Table 2. A very nice
feature of the Weibo dataset is the set of provided VIP users (also
2www.kddcup2012.org/c/kddcup2012-track1/data
3In the Tencent Weibo dataset, for each user, the appearance of each word is



Table 3: A sample of FLDA topics and their influencers.

Topic Top-10 keywords Top-5 influencers
“Information data, web, cloud, software, open, windows, Tim O’Reilly, Gartner Inc., Scott Hanselman (software blogger),
Technology" microsoft, server, security, code Jeff Atwood (software blogger, co-founder of stackoverflow.com),

Elijah Manor (software blogger)
“Food and food, chocolate, coffee, eat, chicken, lunch Whole Foods (organic grocery chain), Foodimentary.com (food blog),

drink" dinner, cheese, recipe, tea WineTwits.com (wine community), Barack Obama, L.A. Times Food
“Cycling bike, ride, race, training, running, miles, Lance Armstrong, Levi Leipheimer, George Hincapie (all 3, US Postal

and running" team, workout, marathon, fitness pro cycling team members), Johan Bruyneel (US Postal team director),
RSLT (radioshackleopardtrek.com – pro cycling team)

“Advertiser’s class, sleep, hate, bed, tired, movie, Taylor Swift, Pete Wentz, Katy Perry (all 3 singers),
dream" homework, finally, bored, ugh Perez Hilton (celeb blogger), Lady Gaga

“Ppl can’t ppl, dnt, nite, tht, jus, Kim Kardashian, Kourtney Kardashian, Khloe Kardashian,
spell" goin, lov, wat, abt, plz Tila Tequila (all 4 reality TV stars), Ciara (singer)

“Down under" travel, Australia, latest, Sydney, Melbourne Kevin Rudd (Australian PM in 2010), Rove McManus, Dave Hughes,
fishing, Australian, trip, hotel, island Wil Anderson (all three are Aussie comedians and TV hosts),

Ruby Rose (Australian model and TV presenter)

Table 4: A sample of the topics of FLDA and Link-LDA together with their influencers

Topic Model Top-10 keywords Top-5 influencers

“Job"

FLDA business, job, jobs, management, manager, job-hunt.org, jobsguy.com, integritystaffing.com/blog
sales, services, company, service, hiring (Job Search Ninja), JobConcierge.com, careerealism.com

Link-LDA
job, jobs, manager, business, Paul Terry Walhus (web host developer and blogger),
sales, management, service, Wayne Sutton (startup advisor), Adam Glickman (tech professional),
company, services, hiring bloggersblog.com (blogging news), Mary Hodder (tech blogger)

“Music"
FLDA listening, album, rock, band, song, pitchfork.com (music website), Trent Reznor (singer), Paste Magazine

john, black, top, tour, artists (music magazine), New Musical Express, Sub Pop Records

Link-LDA listening, rock, album, song, band, Club Ubuntu, Nithin Jawali (tech enthusiast), Paul Shaffer (musician)
black, john, top, beatles, bob Debra Zimmer (consultant), iheartquotes.com (a collection of quotes)

“Justice"
FLDA police, court, case, law, report, death, Barack Obama, CNN Breaking News, The New York Times,

story, arrested, woman, state CanadaCool.com, BBC Breaking News

Link-LDA police, ap, law, court, report, Health Brand, 2humor.com (funny stuff), healthsmartme.tumblr.com
press, case, death, reuters, state Daniel Vega (lawyer), Multiplaza Shopping (shopping deals)

“Weather"
FLDA snow, weather, rain, winter, high, CNN Breaking News, The Denver Post, NPR News,

nc, denver, storm, wind, county The Weather Channel, CBS Denver

Link-LDA snow, weather, atlanta, rain, high, DiningPerks.com, Georgia Aquarium, Atlanta Journal-Constitution
nc, county, south, fire, north (Atlanta newspaper), HelloNorthGeorgia.com, Q100 Atlanta (radio)

called items in Weibo), which enables us to systematically evaluate
the precision of various key influencer methods. These VIP users
are manually labeled by Weibo administrators, and organized in
hierarchical categories. An example hierarchical category is sci-
ence_and_technology.internet.mobile, where categories in different
levels are separated by a dot “.”. In this dataset, categories are
anonymized as integers, such as 1.4.2.3. There are 377 categories
and on average each category contains 16.2 VIPs. According to
Weibo, the VIP users are typically famous people and organizations.
In other words, they are “key influencers" in their corresponding cat-
egories. As a result, the VIP users can be used as the “ground truth"
for our empirical evaluation. While we don’t expect VIP categories
to have 100% precision or recall, they give us enough information
to facilitate relative comparisons across different schemes.

Based on this information, we have set up the following experi-
ment. For a given category, we use one VIP (i.e. all the words of
this user) as the query, and observe how many of the fellow VIP
users in the same category are identified as top influencers by the
different schemes. In the following, we compare our FLDA model
with TSPR, TwitterRank and Link-LDA. We maintain the number
of topics at 100 for all the methods and run 500 iterations for LDA
(used in TSPR and TwitterRank), Link-LDA and FLDA. The priors
used are 1.0 for α, 0.01 for β, γ and ε, and 0.1 for ρ.

Figure 3a and Figure 3b compare our FLDA model with TSPR,
TwitterRank and Link-LDA on two of the largest categories in the

associated with a weight (usually≤ 1.0). We multiply this weight by 100 to
approximate the underlying word frequency.

Weibo dataset. For each category, we use every VIP user as a key
influencer query and check how many of the top K returned users
are the fellow VIP users. We report the average number of VIPs
among the top K returned results across all the queries. As shown in
both figures, our FLDA model consistently produces better precision
results than the others by a significant margin. TSPR is usually the
worst among all methods, followed by TwitterRank. Link-LDA
performs slightly better than the two PageRank-based approaches.

To analyze the results across all categories we employ a stan-
dard Mean Average Precision (MAP) [21] metric. MAP for a set
of queries is defined as the mean of the average precision scores
(AvgP ) for each query. AvgP of a list of top-k query results is
defined as the average of precision values for all k prefixes.

Figure 4 shows MAP of all the queries across all categories in
the Weibo dataset. Again, FLDA produces significantly better re-
sults than the competing methods, more than 2 times better than
TSPR and TwitterRank, and around 1.6 times better than Link-
LDA. Interestingly, FLDA elected only 50% of Weibo links to be
content-related. This explains the significant advantage of FLDA
over Link-LDA, which assumes that all links are topic-specific.

As shown in Figure 3a, 3b and Figure 4, the distributed FLDA
consistently produces result with quality almost identical to that
of the sequential FLDA. This confirms the relaxed dependency
assumption on which our distributed FLDA Gibbs sampling is based.

Throughout the experiments we measured the time taken by the
on-line component of our SKIT search framework. On average,
each query takes 1.7 sec to get the results, and this time does not
depend on the off-line modeling scheme we use.
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Figure 3: Average number of returned VIPs
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Figure 5: Speed-Up of Distributed FLDA on Twitter dataset.

6.3 Scalability
Before evaluating the scalability of our distributed FLDA Gibbs

sampling algorithm, we first report the execution times for the se-
quential algorithm. For the KDD Weibo dataset, the sequential
Gibbs sampling on a high-end server (192GB RAM, 3.2GHz pro-
cessor) takes around 13 minutes per iteration, and for the Twitter
dataset, it takes more than one hour per iteration. On Twitter dataset
FLDA runs longer because there are many more words and links
to sample. Running sequential Gibbs sampling for 500 iterations
takes around 4.6 days for the KDD Weibo dataset, and would take
21 days for the Twitter dataset! This clearly motivates the need for
a scalable solution.

Our distributed algorithm completes 500 iterations on Twitter
data in about 36 hours, using 200 workers on 27 machines. Overall,
the distributed FLDA in this instance is about 14 times faster than a
sequential implementation running on single, large-memory server.

We tested the scalability of the distributed algorithm along three
dimensions: data size, number of topics, and the number of con-
current workers. To obtain the scaled down dataset we performed
uniform random sampling of users, for example to generate a 4
times smaller dataset we use a sampling rate of 25%. The results are
summarized in Figure 5 where the scaled-down dataset is denoted as
corpus size and is measured by the sampling rate used. We explore
a wide range of sizes (from 12.5% all the way up to 100%), number

of topics (from 25 to 200) and number of workers (from 25 to 200).
The figure shows that the distributed FLDA scales well along all
dimensions, given the limitations of our cluster. Our (older) CPU’s
were significantly oversubscribed with 8 workers per node, which
was the case with 200 workers.

7. CONCLUSION
This paper addresses the problem of identifying topic-specific

key influencers in microblog networks. To model the per-topic in-
fluence of each user, we introduce a novel Bernoulli-Multinomial
mixture model called FLDA. FLDA incorporates the content of
tweets and the network structure of microblogs into one unified
model. Different from the previous work, such as Link-LDA, our
FLDA model is specifically designed for microblogs in that it cap-
tures the fact that in reality a user sometimes follows another due
to content-independent reasons. Moreover, in order to apply FLDA
to a web-scale microblog network, we design a distributed Gibbs
sampling algorithm for FLDA on the Spark distributed computing
framework. Finally, the FLDA model is incorporated in a proposed
general search framework for topic-specific key influencers, which
provides a keyword search interface for users to freely query key
influencers in different topic combinations.

Through experiments on two real-world microblog datasets, we
demonstrate that FLDA significantly outperforms the state-of-the-



art methods in terms of precision. Furthermore, the distributed
Gibbs sampling algorithm for FLDA provides excellent speed-up to
hundreds of workers.
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APPENDIX
The Gibbs sampling equation for latent variable z can be derived in a similar
way to Link-LDA. We omit its derivation due to space limitation. Let us
derive the posterior probability of latent variables x and y:

p(xm,l, ym,l|y−(m,l), x−(m,l), w, z, e, α, β, γ, ε, ρ)

∝p(x, y, w, z, e|α, β, γ, ε, ρ)

=

∫ ∫ ∫ ∫ ∫
p(x, y, w, z, e, θ, ϕ, σ, π, µ|α, β, γ, ε, ρ)dθdϕdσdπdµ

=

∫ ∫ ∫ ∫ ∫
p(x|θ)p(y|µ)p(w|z, ϕ)p(z|θ)p(e|x, y, σ, π)

× p(θ|α)p(ϕ|β)p(σ|γ)p(π|ε)p(µ|ρ)dθdϕdσdπdµ (10)

As p(e|x, y, σ, π) = p(e|x, σ)yp(e|π)1−y , we get,

=

∫
p(θ|α)p(z|θ)p(x|θ)dθ

∫
p(σ|γ)p(e|x, σ)ydσ

×
∫
p(ϕ|β)p(w|z, ϕ)dϕ

∫
p(π|ε)p(e|π)1−ydπ

∫
p(µ|ρ)p(y|µ)dµ

(11)

Let us derive the first two integrals in Equation (11).∫
p(θ|α)p(z|θ)p(x|θ)dθ

∫
p(σ|γ)p(e|x, σ)ydσ

=

∫ M∏
j=1

p(θj |α)
M∏
j=1

Nj∏
u=1

p(zj,u|θj)
M∏
j=1

Lj∏
v=1

p(xj,v |θj)dθ

×
∫ K∏

k=1

p(σk|γ)

M∏
j=1

Lj∏
v=1

p(ej,v |σxj,v )yj,vdσ (12)

Expand each probability formula based on its density,

=

∫ M∏
j=1

Γ(
∑K
k=1 αk)∏K

k=1 Γ(αk)

K∏
k=1

θ
αk−1
j,k

M∏
j=1

Nj∏
u=1

θzj,u

M∏
j=1

Lj∏
v=1

θxj,vdθ

×
K∏
k=1

∫
Γ(

∑M
i=1 γi)∏M

i=1 Γ(γi)

M∏
i=1

σ
γi−1
k,i

M∏
j=1

Lj∏
v=1

σ
yj,v
xj,v,ej,vdσk (13)

Replace the innermost products over words in a documentNm by exponenti-
ating to the sum of the counts, and do the same replacement for the products
over users,

=

M∏
j=1

∫
Γ(

∑K
k=1 αk)∏K

k=1 Γ(αk)

K∏
k=1

θ
αk−1
j,k

K∏
k=1

θ
ck,j,∗
j,k

K∏
k=1

θ
dk,j,∗,∗
j,k dθj

×
K∏
k=1

∫
Γ(

∑M
i=1 γi)∏M

i=1 Γ(γi)

M∏
i=1

σ
γi−1
k,i

M∏
i=1

σ
dk,∗,i,1
k,i dσk

=

M∏
j=1

∫
Γ(

∑K
k=1 αk)∏K

k=1 Γ(αk)

K∏
k=1

θ
αk+ck,j,∗+dk,j,∗,∗−1

j,k dθj

×
K∏
k=1

∫
Γ(

∑M
i=1 γi)∏M

i=1 Γ(γi)

M∏
i=1

σ
γi+dk,∗,i,1−1

k,i dσk (14)



Multiply each term by a constant equal to one (consisting of two inverse
fractions), and distribute the integral over the original constant Γ-function
fraction for the priors,

=
M∏
j=1

Γ(
∑K
k=1 αk)∏K

k=1 Γ(αk)

∏K
k=1 Γ(αk + ck,j,∗ + dk,j,∗,∗)

Γ(
∑K
k=1 αk + ck,j,∗ + dk,j,∗,∗)

×
∫

Γ(
∑K
k=1 αk + ck,j,∗ + dk,j,∗,∗)∏K

k=1 Γ(αk + ck,j,∗ + dk,j,∗,∗)

K∏
k=1

θ
αk+ck,j,∗+dk,j,∗,∗−1

j,k dθj

×
K∏
k=1

Γ(
∑M
i=1 γi)∏M

i=1 Γ(γi)

∏M
i=1 Γ(γi + dk,∗,i,1)

Γ(
∑M
i=1 γi + dk,∗,i,1)

×
∫

Γ(
∑M
i=1 γi + dk,∗,i,1)∏M

i=1 Γ(γi + dk,∗,i,1)

M∏
i=1

σ
γi+dk,∗,i,1−1

k,i dσk (15)

Note that both integrals are over the entire support of Dirichlet densities, so
they both evaluate to 1, and hence drop out of the products,

=
M∏
j=1

Γ(
∑K
k=1 αk)∏K

k=1 Γ(αk)

∏K
k=1 Γ(αk + ck,j,∗ + dk,j,∗,∗)

Γ(
∑K
k=1 αk + ck,j,∗ + dk,j,∗,∗)

×
K∏
k=1

Γ(
∑M
i=1 γi)∏M

i=1 Γ(γi)

∏M
i=1 Γ(γi + dk,∗,i,1)

Γ(
∑M
i=1 γi + dk,∗,i,1)

(16)

Eliminate constant terms that do not depend on the position (m, l),

∝
∏K
k=1 Γ(αk + ck,m,∗ + dk,m,∗,∗)

Γ(
∑K
k=1 αk + ck,m,∗ + dk,m,∗,∗)

×
K∏
k=1

Γ(γem,l + dk,∗,em,l,1)

Γ(
∑M
i=1 γi + dk,∗,i,1)

(17)
Define c−(m,l) the same way as c, only without the counts for position
(m, l). Then, for counts that do not include position (m, l), c−(m,l) = c.
For ones that do include (m, l), c−(m,l) = c + 1. d−(m,l) is defined in
the same way. Also, using the fact that Γ(x+ 1) = x× Γ(x), expand out
the incremented terms depending on (m, l),

=

∏
k 6=xm,l

Γ(αk + ck,m,∗ + d
−(m,l)
k,m,∗,∗)

Γ(1 +
∑K
k=1 αk + ck,m,∗ + d

−(m,l)
k,m,∗,∗)

× Γ(αxm,l + cxm,l,m,∗ + d
−(m,l)
xm,l,m,∗,∗)

× (αxm,l + cxm,l,m,∗ + d
−(m,l)
xm,l,m,∗,∗)

×
∏

k 6=xm,l

Γ(γem,l + d
−(m,l)
k,∗,em,l,1

)

Γ(
∑M
i=1 γi + dk,∗,i,1)

×
Γ(γem,l + d

−(m,l)
xm,l,∗,em,l,1

)

Γ(
∑M
i=1 γi + d

−(m,l)
xm,l,∗,i,1)

×
γem,l + d

−(m,l)
xm,l,∗,em,l,1∑M

i=1(γi + d
−(m,l)
xm,l,∗,i,1)

(18)

Refold the residual Γ-function terms back into their general products,

=

∏K
k=1 Γ(αk + ck,m,∗ + d

−(m,l)
k,m,∗,∗)

Γ(1 +
∑K
k=1 αk + ck,m,∗ + d

−(m,l)
k,m,∗,∗)

× (αxm,l + cxm,l,a,∗ + d
−(m,l)
xm,l,m,∗,∗)

×
K∏
k=1

Γ(γem,l + d
−(m,l)
k,∗,em,l,1

)

Γ(
∑M
i=1 γi + dk,∗,i,1)

×
γem,l + d

−(m,l)
xm,l,∗,em,l,1∑M

i=1(γi + d
−(m,l)
xm,l,∗,i,1)

(19)

Remove all the terms that do not depend on xm,l or ym,l.

If ym,l = 0, the last term
γem,l

+d
−(m,l)
xm,l,∗,em,l,1∑M

i=1(γi+d
−(m,l)
xm,l,∗,i,1

)
in Equation (19) does

not exist,
∝ αxm,l + cxm,l,m,∗ + d

−(m,l)
xm,l,m,∗,∗ (20)

If ym,l = 1,

∝
(αxm,l + cxm,l,m,∗ + d

−(m,l)
xm,l,m,∗,∗)(γem,l + d

−(m,l)
xm,l,∗,em,l,1

)∑M
i=1(γi + d

−(m,l)
xm,l,∗,i,1)

(21)
The third integral

∫
p(ϕ|β)p(w|z, ϕ)dϕ in Equation (11) is independent

of both x and y, so it can be safely canceled out. Let us turn to the forth
integral in Equation (11).∫

p(π|ε)p(e|π)1−ydπ

=

∫
Γ(

∑M
i=1 εi)∏M

i=1 Γ(εi)

M∏
i=1

π
εi−1
i

M∏
j=1

Lj∏
v=1

π
1−yj,v
ej,v dπ

=

∫
Γ(

∑M
i=1 εi)∏M

i=1 Γ(εi)

M∏
i=1

π
d∗,∗,i,0+εi−1

i dπ

∝
Γ(

∑M
i=1 εi)∏M

i=1 Γ(εi)
×

∏M
i=1 Γ(d∗,∗,i,0 + εi)

Γ(
∑M
i=1 d∗,∗,i,0 + εi)

∝

∏
i6=em,l

Γ(d∗,∗,i,0 + εi)× Γ(d∗,∗,em,l,0 + εem,l )

Γ(
∑M
i=1 d∗,∗,i,0 + εi)

(22)

If ym,l = 0, Equation (22) can be written as:

=

∏
i 6=em,l

Γ(d
−(m,l)
∗,∗,i,0 + εi)× Γ(d

−(m,l)
∗,∗,em,l,0

+ εem,l + 1)

Γ(1 +
∑M
i=1 d

−(m,l)
∗,∗,i,0 + εi)

=

∏
i Γ(d

−(m,l)
∗,∗,i,0 + εi)

Γ(
∑M
i=1 d

−(m,l)
∗,∗,i,0 + εi)

×
d
−(m,l)
∗,∗,em,l,0

+ εem,l∑M
i=1 d

−(m,l)
∗,∗,i,0 + εi

∝
d
−(m,l)
∗,∗,em,l,0

+ εem,l∑M
i=1 d

−(m,l)
∗,∗,i,0 + εi

(23)

If ym,l = 1, Equation (22) can be written as:

=

∏
i Γ(d

−(m,l)
∗,∗,i,0 + εi)

Γ(
∑M
i=1 d

−(m,l)
∗,∗,i,0 + εi)

∝ 1 (24)

Finally, we derive the last integral in Equation (11).∫
p(µ|ρ)p(y|µ)dµ

=

M∏
j=1

∫
Γ(

∑
s ρs)∏

s Γ(ρs)

∏
s

µρs−1
j,s

M∏
j=1

Lj∏
v=1

µj,yj,vdµj

=

M∏
j=1

∫
Γ(

∑
s ρs)∏

s Γ(ρs)

∏
s

µ
d∗,j,∗,s+ρs−1

j,s dµj

∝
M∏
j=1

∏
s Γ(d∗,j,∗,s + ρs)

Γ(
∑
s d∗,j,∗,s + ρs)

=
∏
j 6=m

∏
s Γ(d∗,j,∗,s + ρs)

Γ(
∑
s d∗,j,∗,s + ρs)

×
∏
s Γ(d∗,m,∗,s + ρs)

Γ(
∑
s d∗,m,∗,s + ρs)

∝

∏
s6=ym,l

Γ(d
−(m,l)
∗,m,∗,s + ρs)× Γ(d

−(m,l)
∗,m,∗,ym,l

+ ρym,l + 1)

Γ(1 +
∑
s d
−(m,l)
∗,m,∗,s + ρs)

=

∏
s Γ(d

−(m,l)
∗,m,∗,s + ρs)

Γ(
∑
s d
−(m,l)
∗,m,∗,s + ρs)

×
d
−(m,l)
∗,m,∗,ym,l

+ ρym,l

d
−(m,l)
∗,m,∗,∗ +

∑
s ρs

∝d−(m,l)
∗,m,∗,ym,l

+ ρym,l (25)

Finally, substituting Equations (20), (23) and (25) into Equation (11)
gives Equation (2). Similary, substituting Equations (21), (24) and (25) into
Equation (11) gives Equation (3).


