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With the rapid increase in the volume of data that enterprises are
producing, enterprises are adopting large-scale data processing
platforms such as HadoopA to store, manage, and run deep analytics
to gain actionable insights from their Bbig data.[ At IBM
Research - Almaden, we have been helping enterprise customers
build solutions exploiting data-intensive analytics. Our deep
experience with actual users has led to an extensive understanding of
the platform requirements needed to support these solutions, and our
goal is to provide a powerful analytics platform, which we call
eXtreme Analytics Platform (XAP), that can be used to create
solutions for customer problems that have not been economically
feasible to solve until now. XAP provides Jaql [i.e., JavaScriptA

Object Notation (JSON) query language, a scripting language to
specify data flows, tools, and techniques to optimize the runtime
execution of these flows], an improved task scheduler, connectors
to data warehouses, and libraries for advanced analytics. Many of
these technologies have been transferred to the IBM InfoSphere
BigInsightsi product. In this paper, we describe the overall
design principles and technology of XAP.

Introduction
Many enterprises are exploring and starting to adopt
large-scale data processing platforms such as Hadoop** for
solving their data-intensive analytic problems. Our group
at IBM Research - Almaden has been working with others in
IBM and our customers to build such solutions. Through this
experience, we have repeatedly observed certain use-case
patterns and have focused our research on platform
extensions that allow us to better develop solutions for these
patterns. In this paper, we describe some of our customer
experiences and design principles and then focus on our
research on platform extensions.
Early large-scale data processing systems include the

Google MapReduce paradigm [1] and its open-source
implementation Hadoop [2], as well as Microsoft Dryad [3].
Web-centric enterprises, which were both developers and
early adopters of scale-out architectures, quickly
recognized the value of higher-level languages within this
environment, evidenced by Google Sawzall [4], Microsoft
DryadLINQ [5], the work of Facebook on Apache Hive [6],
and the work of Yahoo! on Apache Pig [7]. Although these
early systems focused on the internal needs of web

companies, we focused on the adaption of these platforms for
all enterprise customers.
There are many activities in industry and academia related

to Hadoop. Some focus on specific solutions [8], and
others focus on specific kinds of analytics such as text
information extraction or machine learning [9–11]. There
has been particular focus on the use of Hadoop for
structured-data warehouse workloads [6, 12, 13]. Our
observation is that customers want to use these data-intensive
analytic platforms for a variety of use-case patterns, and
indeed, the power of the platform is in its support for a great
variety of data, the flexible integration of this data, and
rich and varied analysis resulting from different use-case
patterns and the interplay between these use cases. Our work
has focused on the underlying platform to support this variety
of workloads. This work is complementary to these other
efforts, and furthermore, one of our design principles is
that the platform must support the integration of a variety
of data and analytics.
We describe a few areas of our work including the Jaql

[JavaScript** Object Notation (JSON) query language]
project, providing a high-level language that is automatically
compiled to, and executed as, sequences of MapReduce jobs.
We also describe the invention of runtime improvements
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inspired, in part, by our research experience with scheduling,
relational database, and other enterprise system technologies.
In addition, we discuss the integration of these new
platforms with other systems found in the enterprise and the
exploration of scalable analytics tailored for Hadoop. With
all of our work, we have upheld two fundamental tenets:
1) diverse data types must be supported, ranging from
unstructured to highly structured data; and 2) we must not
compromise the scalability, fault-tolerance, or flexibility of
Hadoop. The eXtreme Analytics Platform (XAP) is the
early name given to a project at IBM Research - Almaden,
which started in 2008 as a focused effort to extend the
capabilities of Hadoop [2]. We collaborate with many
research, product, and services groups in IBM. We use the
term BXAP[ as a convenient way to refer to the work
described here. Many of the technologies discussed have
been transferred to the IBM InfoSphere BigInsights* [14]
product.
Our work with customers, both internal and external,

can be summarized by the following three use-case patterns
and customer examples that exemplify the value of many
aspects of our project focus.

Pattern 1: Complex analytics for structured data
An early customer with whom we worked is an established
corporation in the credit-card business, with leadership
analytics capabilities for predicting credit-card fraud, and
strong data-warehouse and traditional business intelligence
capabilities for analyzing merchants, account holders,
merchant and consumer banks, and many other critical
aspects of the customer’s business. Our work with
the customer centered on the use of Hadoop to extend
the customer’s fraud analytic capabilities even further, by
providing a scalable and cost-effective platform for storing
many years of credit-card transaction data and supporting
development of new prediction techniques as new fraud
patterns emerge. This motivated an early focus on
performance for highly structured data, in addition to our
already strong support for unstructured data. Analytics are
highly varied, using custom algorithms and many different
third-party modules. This further highlighted the importance
of the support of Jaql for external modules, and our
exploration of the use of R, a statistical analysis system, in
this massively scalable environment [15]. Valuable data
exists in the customer’s data warehouses regarding accounts,
merchants, and other important entities that cannot be
derived from just the raw transaction data, and thus, there
is a need for strong integration between the customer’s
different enterprise systems.

Pattern 2: Ad hoc exploration
A more recent customer is a leading energy company for
harnessing wind-generated power. Simulating wind patterns
throughout the world is both critical for the customer’s

business and produces petabytes of data. We used XAP to
develop applications that let the customer’s scientists explore
the simulation output using ad hoc queries. This application
had to be fast, so we applied many ideas from relational
databases, such as column stores [16] and co-partitioning
[17], to make better use of resources and thereby reduce
response times. In addition, we developed novel techniques
for MapReduce, such as the FLEX scheduler [18] and
Adaptive MapReduce [19], that reduce response times as
well as improve manageability.

Pattern 3: Applications for extract-load-transform
and analysis of unstructured data
Unstructured data, ranging from large document collections
to social media and application logs, has been a rich source
of use cases for XAP. Often, the data undergoes an
extract-load-transform (ELT) process from which more
regular, (semi-)structured data is extracted. For this purpose,
we developed Jaql modules that harness SystemT [9] so
that we can apply sophisticated information extraction rules
and libraries in parallel. After the ELT stage, the data is
often aggregated and exported to systems such as data
warehouses or search indexes. In addition, complex
analytics on the features derived from the raw data is often
performed for topic modeling, frequent pattern analysis,
or next-action recommendation. Examples of applications
that adhere to this pattern include Cognos* Consumer
Insights [20], intranet search with the semantic search engine
ES2 (Enterprise Search 2) [21], and deep analysis of public
data with Midas [8].

Architecture overview
Figure 1 shows the general architecture of XAP. XAP
operates on a cluster of machines that are deployed and
administered using cluster management tools and installed
with a distributed file system such as HDFS (Hadoop
Distributed File System) [22] or GPFS* (General Parallel
File System*) [23]. In this paper, we focus on the new
components of XAP and enhancements to MapReduce,
which are shown in the numbered boxes in Figure 1 (1–5).
The XAP stack improves performance and manageability
and makes it easier to develop new applications as well as
connect to the existing enterprise ecosystem, which include
various tools such as those involving ELT tools, the data
warehouse, and metadata tools. We first describe Jaql
(labeled B1[ in Figure 1), a high-level scripting language that
is used for creating both ELT and analytic workflows on
Hadoop. The data model of Jaql is based on JSON, and it
provides flexible schema handling. Next, we describe
runtime improvements including the FLEX scheduler, shown
in Figure 1 (labeled B2[), which optimizes allocation of
resources to Hadoop jobs, and the enhancements (Figure 1,
labeled B3[) that substantially improve performance and
manageability of MapReduce-based applications. Here, we
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use the term Bfair scheduling[ to denote a method of
assigning resources to jobs such that jobs receive, on
average, an equal share of resources through time. For the
enterprise connectors shown in Figure 1 (labeled B4[), we
focus on data-warehouse connectors to transfer data between
Hadoop and the warehouse, as well as initiating Jaql jobs
from within the warehouse. Finally, we describe the libraries
and tools for complex analytics (Figure 1, labeled B5[).

Jaql
Jaql is a data-processing system that provides a scripting
language, compiler, and runtime system [24]. It was designed
to process Blarge[ collections (terabytes to petabytes) of
Bsmall[ objects (bytes to megabytes) by harnessing the
Hadoop implementation of MapReduce [1] for scalable data
processing. Just as SQL (Structured Query Language) and
relational database systems provided a proven abstraction for
data management, high-level declarative languages such as
Hive [6], Pig [7], and Jaql have exhibited similar advantages
when compared with developing data flows directly with
MapReduce. However, flexibility is still needed, so Jaql was
designed to allow users to directly exploit MapReduce when
needed, while blending such low-level specifications with
declarative data flows. We refer to such blending as physical
transparency and discuss it in more detail below. We first
introduce the data model, then the scripting language and the
runtime, and provide several examples where Jaql has been
successfully used.
Enterprise data comes in many forms, ranging from highly

heterogeneous data, such as web pages and log files, to
homogeneous data such as weather simulation output and
financial transactions. Consequently, the Jaql Data Model

(JDM) was chosen to permit flexibility, so that such
heterogeneity can be modeled while allowing structure to be
specified when such information is available. The JDM is
based on JSON [25], allowing collections of self-describing,
nested, and heterogeneous data to be processed. In addition,
the JDM has extended atomic types such as binary and
date types. JDM schemas are used to specify homogeneity
within a collection and are treated as a constraint in which
the structure may be partially specified. This is useful for
queries for which only parts of the data are known or
needed, and the remainder can be treated as Bpayload[ or
Bpass-through[ data. The example in Figure 2 shows the
JSON representation of a collection of intranet pages as they
are processed by a Jaql data flow. Box (a) in Figure 2 shows
an array (or collection) of records, each record containing
a set of field names and associated values. All records contain
a Uniform Resource Identifier (URI) and in some cases
content, metadata, or both. The subsequent boxes (b, c,
and d) show how the data in box (a) is transformed by the
subsequent Jaql operators.
The scripting language of Jaql was designed to easily

specify data flows whose operators consume and produce
JDM values. The overall design was influenced by functional
and query languages. As a result, functions and lazy
evaluation (e.g., expressions are evaluated when values
are needed) are a central feature in Jaql, as is the core
collection of Bbulk[ operators that were inspired by relational
operators (e.g., filter, projection, grouping, and join).
Because objects may be complex, Jaql was designed so
that any expression could be applied at any level of nesting,
thus emphasizing composability. Since Jaql was designed to
be a Bglue[ language that integrates libraries and other
data processing scripts, users can add their own operators,
package scripts, libraries, and resources to modules. The data
flow in Figure 2 illustrates familiar operators, such as reading
and writing, transforming each element, and grouping, as
well as the expand operator for nested data that performs
an unnesting. This data flow extracts all record fields, unnests
all field names into a single array, and counts how many
times they occur.
The Jaql system is composed of 1) an interpreter that

parses Jaql scripts into an internal representation called an
ExprTree (expression tree), 2) a heuristic rewriter that
transforms the ExprTree into a form that exploits parallelism
and is more efficient, and 3) an evaluator. If possible, the
rewriter produces a final plan that is a directed acyclic graph
(DAG) of MapReduce jobs. Jaql evaluates the final plan
by launching zero or more MapReduce jobs. For the data
flow in Figure 2, Jaql requires only one MapReduce job for
the data flow; the map step handles the read, transform,
expand, and grouping key extraction, while the reduce step
groups and writes the result.
Interestingly, properties of any ExprTree can always be

used as an evaluation plan and evaluated, and it can always

Figure 1

General architecture for the eXtreme Analytics Platform. (JSON:
JavaScript Object Notation; ELT: extract-load-transform.)
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be decompiled into a valid Jaql script. If further performance
tuning is needed, a user can manually optimize it by
directly modifying the plan using a text editor. This can
be contrasted with any RDBMS (relational database
management system) for which the physical plan cannot be
modified. When an RDBMS optimizer produces the wrong
plans, hints can suggest which physical plan to use.
However, hints do not cover all cases, which is why Jaql
gives users full control when needed.
Such blending of declarative scripts with low-level plans is

what we refer to as physical transparency. This feature
illustrates many of the distinguishing features of Jaql.
For example, MapReduce, which is a core Jaql operator,
requires higher-order functions (functions as parameters).
In addition, physical transparency facilitates bottom-up
developmentVgiven a problem for which existing
functionality is unsuitable, the developer first develops
specialized access methods and operators, which can all be
incorporated in a larger Jaql script. If warranted, these
low-level operators can be packaged into functions and
modules. Finally, if such functionality is more broadly
applicable, the functionality can be integrated into Jaql by
modifying the Jaql rewriter appropriately and, if need be,
adding additional Jaql query language syntax. The rewriter
and syntax are currently not extensible by anyone except the
Jaql development team, but this is an interesting future
direction to explore.
Jaql has been used in all of the patterns discussed in the

introduction of this paper. For the ELT pattern, applications
provide all of the scaffolding for metadata and simply use
Jaql as a light-weight scripting engine. Because the data
and transformation logic are often complex, errors are likely
to arise for some small fraction of the data. We extended Jaql

with sophisticated error-handling capability so that tolerance
to such errors can be declaratively specified, leaving the
appropriate adjustment of the evaluation plan to the rewriter
[26]. As data becomes more structured, users often want
to interact with the data using SQL. For this purpose, a
SQL front-end to Jaql has been developed that compiles Jaql
SQL to Jaql, thus using Jaql as a lightweight runtime.

Hadoop runtime improvements

FLEX scheduler
Originally, Hadoop employed first-in, first-out (FIFO)
scheduling, but such simple schemes can result in suboptimal
response time. The Hadoop Fair Scheduler (HFS) is a
slot-based MapReduce scheme designed to ensure a degree
of fairness among the jobs, by guaranteeing each job at least
some minimum number of allocated slots. However, HFS
does not attempt to actually optimize any specific scheduling
metric. Most of our customer use cases involve concurrent
execution of MapReduce jobs, and these Hadoop schedulers
do not provide adequate ability to optimize concurrent job
execution. Therefore, XAP includes a novel FLEX scheduler
that is able to optimize a variety of metrics associated
with individual jobs as well as entire Jaql scripts.
The goal of our FLEX algorithm is to optimize any of a

variety of standard scheduling theory metrics while ensuring
the same minimum job slot guarantees as in HFS, and
ensuring maximum job-slot guarantees as well. The metrics
can be chosen from a menu that includes response time,
total schedule execution time (makespan), any of several
metrics that reward or penalize job completion times
compared with possible deadlines and service-level
agreements (SLAs). The FLEX allocation scheduler can be

Figure 2

Dataflow that counts field occurrences in a collection. (HDFS: Hadoop Distributed File System.)
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regarded as either a standalone plug-in replacement to the
allocation scheme in HFS or as an add-on module that works
synergistically with it. More details about FLEX have been
published previously [18].
In order to optimize the schedule, we need to estimate the

size of the jobs being scheduled. For the jobs that have
already made some progress, we can extrapolate their total
size from the already completed tasks. For the jobs not
yet launched, we make predictions on the basis of prior
invocations of the same job. To this end, we developed a
technique that predicts the runtime performance for a fixed
set of queries running over varying input datasets. Our
prediction technique splits each query into several segments
where the performance of each segment is estimated using
machine-learning models. These per-segment estimates are
used by a global analytical model to predict the overall
query runtime. Our approach uses minimal statistics about
the input datasets (e.g., tuple size and number of tuples),
which are complemented with historical information about
prior query executions (e.g., execution time). More details on
the predictions module have been published previously [27].

Adaptive MapReduce
XAP includes new adaptive runtime techniques for
MapReduce that improve performance and simplify job
tuning. We implement these techniques by violating a key
assumption of MapReduce that mappers run in isolation.
Instead, our situation-aware mappers (SAMs) communicate
through a distributed metadata store to obtain an aggregate
view of the job state and to make globally coordinated
optimization decisions. While implementing SAMs, we had
to be careful to satisfy key MapReduce assumptions about
scalability and fault tolerance, and not introduce noticeable
performance overhead. For instance, SAMs can be executed
in any order and re-executed at any time. We also avoid
synchronization barriers and pay special attention to recovery
from task failures in the critical path. We utilize SAMs to
develop the set of techniques in the following paragraphs that
make MapReduce more dynamic.
Adaptive mappers (AMs) dynamically change the

granularity of checkpoints to trade off system performance,
load balancing, and fault tolerance. In MapReduce, input data
partition (split) size is a very important tuning parameter
because having too few splits results in poor load balancing
and decreased performance under faults, whereas with too
many splits, the overhead of starting and checkpointing
the tasks may dominate the running time of the job. In
contrast, AMs make a decision after every split to either
checkpoint or use another split and Bstitch[ it to one or more
already processed ones. As a result, we obtain both reduced
task startup overhead and dynamic load balancing.
Adaptive combiners (ACs) improve local aggregation by

maintaining a cache of partial aggregates for the frequent
keys. This technique was motivated by large group-by and

aggregation queries that are often seen in our customers’
workflows. ACs dramatically decrease the amount of data
that needs to be sorted, shuffled, and merged for these
queries, often improving their overall performance by as
much as a factor of 3.
We often need an approximate histogram of map output

keys. For instance, such a histogram is used in choosing
cache size and replacement policy for ACs. Therefore, we
implemented adaptive sampling (AS), which collects a
sample of map output keys and aggregates them into a global
histogram. During its initial sampling phase, every AM
writes a subset of the output keys to a separate sample file
and continuously updates the metadata store with whatever
information is needed to determine whether a sufficient
sample has been accumulated. The first mapper that detects
that the stopping condition has been satisfied becomes the
leader, collects all the sample files, and aggregates them into
one histogram. AS utilizes AM to use the input splits in
random order; thus, the histogram is equivalent to what a
coarse block-level sampling would produce.
Another important use of the histogram produced by AS is

adaptive partitioning (AP), which allows us to balance the
partitioning of map outputs among the reducers. In particular,
AP can produce ranges of map output keys with a roughly
equal number of records. Such equal-sized range partitioning
is required for the efficient parallel sort of map outputs.
In the future, we plan to use AS outputs in other runtime
optimization decisions, for individual Hadoop jobs (e.g.,
the join method) and Jaql queries (e.g., join order).
The flexible programming environment of Hadoop

allowed us to implement SAMs and use them in adaptive
techniques without any changes to Hadoop itself. Instead,
the adaptive techniques are packaged as a library that
can be used by Hadoop programmers through a simple
API (application programming interface). To make the
adaptive techniques completely Btransparent[ to the user,
we integrated them into the Jaql query processor. (By
Btransparent,[ we mean that adaptive techniques are applied
unbeknownst to the user, and the user does not know that
adaptive techniques are used.) Our distributed metadata
store uses Apache ZooKeeper, a scalable, fault-tolerant,
transactional distributed coordination service. For more
information about Adaptive MapReduce in XAP, please
refer to [19].

Collocation
Hadoop has become an attractive platform for large-scale
data analytics. However, there are still a number of
limitations in Hadoop that affect performance. One of the
limitations is its lack of ability to collocate related data on
the same set of nodes. Collocation can be used to improve
the efficiency of many operations, including indexing,
grouping, aggregation, columnar storage, joins, and
sessionization. To achieve collocation, we introduce
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CoHadoop [17], a lightweight extension of Hadoop that
allows applications to control where data is stored at the
file-system level. CoHadoop extends HDFS with a new
file-level property called a locator and modifies an HDFS
data placement policy so that files with the same locator
are placed on the same set of data nodes with best effort,
including replicas. At the same time, CoHadoop also retains
the benefits of Hadoop, including load balancing and fault
tolerance. Through a detailed performance study of join and
sessionization queries in the context of log processing, we
observed that CoHadoop outperforms both plain Hadoop
and previous work. In particular, compared with Hadoop,
CoHadoop achieves a more than 13 times speedup for
a sessionization query on 1.1 TB of log data. In addition,
CoHadoop is more than 2 times faster for joins than an
existing collocation approach, Hadoop++ [12], while also
reducing the data loading time by more than half.

Column stores
Hadoop provides 1) the ability to use complex data types
such as arrays, maps, and nested records, 2) the ability to
write arbitrary map and reduce functions in a programming
language instead of using a declarative query language,
and 3) the choice of a widely accepted programming
language, Java**, to express map and reduce functions.
These features present a new challenge in designing a
storage engine that traditional parallel DBMSs (database
management systems) have not had to solve. For XAP,
we developed several column-oriented storage and
processing techniques specifically designed to support
these features.
We identified performance challenges specific to complex

data types in Hadoop, and we describe a novel skip list
column format that enables lazy record construction,
mostly inspired by the techniques used in column-oriented
DBMSs [28]. A skip-list layout allows a reader to skip ahead
a fixed number of variable-length rows in a file without
having to interpret the intervening bytes. We also examined
techniques that allow lazy decompression in Hadoop. This
method can result in speedups of up to 1.5 times over
an eager record construction strategy. It is important to
emphasize that our column-oriented techniques make use
of extensibility features that are already in Hadoop, so no
modifications to the core of Hadoop are required. Moreover,
these techniques do not require the use of a declarative query
language and are designed to work even with hand-coded
MapReduce jobs. In aggregate, our techniques can improve
the performance of the map phase of a Hadoop job by
as much as two orders of magnitude, and the overall job by
more than one order of magnitude. Details of the design
and implementation, as well as performance studies, are
available at [16].
Learning from our experience with collocation, we ensured

that the column-store format interacts with the replication

policy of HDFS to co-locate column data. We demonstrated
through experiments that Hadoop can make use of this
storage format without incurring a large penalty for
reconstructing records from the constituent columns.

Star-joins
XAP includes a subsystem called Clydesdale that shows
dramatic performance improvements for structured data
processing on an unmodified instance of Hadoop. Such a
design also allows Clydesdale to inherit the fault-tolerance,
elasticity, and scalability properties of MapReduce. Using the
star schema benchmark [29], we showed that Clydesdale
is 5 to 83 times faster than Apache Hive [6], an open-source
SQL-based system.
The design of Clydesdale draws on several existing

techniques from parallel DBMSs such as columnar storage,
tailored n-way join plans, and block iteration (operating on a
block of data at a time instead of a single row). However,
adapting these techniques for the MapReduce environment
is not straightforward, in particular when trying to preserve
all the properties that make the platform attractive. The
challenges arise from two important differences between
a parallel DBMS and MapReduce: 1) the presence of a
distributed file system and 2) the constraints of the
task-scheduling infrastructure. Clydesdale uses the
column-store format described in the previous section.
The task-scheduling infrastructure in Hadoop was designed
to provide locality-aware scheduling [1] at the granularity
of map and reduce tasks. Map and reduce tasks are expected
to last a short time (few minutes), and a typical job may
consist of several map and reduce tasks. In contrast, DBMS
runtimes have traditionally used iterator-based operators
[30] that are scheduled to run for the entire duration of the
query on a given server. Clydesdale uses carefully designed
map tasks so that data structures used in query processing
can be shared across multiple threads and even multiple
tasks consecutively executed on any node. This allows
Clydesdale to amortize the per-task overheads that can have
an adverse impact on the performance of MapReduce jobs.
Clydesdale also exploits current hardware trends, such

as servers with large memories and multiple cores and,
as suggested, uses an appropriately tailored n-way join
algorithm instead of repeated use of a generic two-way join.
Clydesdale is aimed at workloads for which the data fits a
star schema. Details of the design and implementation of
Clydesdale were published previously [31].

Integration with data warehouses
With many of our customer engagements, we have observed
that they use Hadoop-based solutions in conjunction with
their data warehouses. In one particular scenario, one
financial customer desires to run some targeted analysis
on the customer’s large transaction logs. The customer would
like to offload the computation to a Hadoop cluster, but it
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also needs to run their classical business intelligence tools,
with which it is accustomed, on the results. A target account
list is identified through some queries in the customer’s
warehouse. It would like to pass this list of account IDs to a
Jaql script that will run the analysis. After Jaql writes its
results into HDFS, the customer would like to generate
reports using its business intelligence reporting tools and to
accomplish this on a regular basis. For this purpose, the
customer needed a solution driven by a database layer.
Another scenario that we often observe is the case in which

customers desire to run a log analysis by enriching their
log data with some reference data that is stored in the
database. In some cases, the reference data changes slowly
and can be replicated in HDFS, whereas in others the customer
wants to keep the data in the database to handle updates.
To address the needs of our customers and provide some

interoperability between Hadoop and the database, we
developed connectors between XAP and DB2*. These
connectors have been transferred to the IBM InfoSphere
BigInsights platform. Next, we describe these features
in detail.

Reading DB2 data in Jaql
Hadoop relies on an abstract InputFormat [2] interface to
read data in parallel. While defining a MapReduce job, the
InputFormat defines splits, which are abstract representations
of data partitions. Each split is assigned to a map task.
The task obtains an iterator over its split (data partition) from
the InputFormat and passes it to the map function.
Hadoop provides DBInputFormat for reading data from

relational databases, which relies on offset and limit to divide
the query result among the mappers. In particular, every
mapper uses a different start point (limit) to read offset
number of tuples from the result set. This method creates a
burden for the database manager, because the DBMS may
have to run each independent query submitted by the
mappers and return a different subset. This input format is
not optimized for exploiting the database parallelism.
As a result, we created two different InputFormat

interfaces to access DB2 data in parallel [32] with the goal of
minimizing the burden on the DBMS and maximizing the
utility of database parallelism. The DB2DPFInputFormat is
specialized to load a table from DB2 with the Database
Partitioning Feature (DPF)Vthe parallel, shared-nothing
version of DB2. The InputFormat is configured with
information to connect to the database as well as a table to
read. Optionally, a predicate to filter rows and a project list to
pick columns may also be provided. We use special features
of DB2 DPF; namely, we create a split per DPF partition,
where each split has information on its partition number.
This InputFormat can only read and consume partitioned

tables (temporary or permanent). We also support non-DPF
servers using the more general DB2InputFormat. This
format moves the result of an arbitrary SQL query from DB2

(or any JDBC [Java Database Connectivity]-compliant
database) into Hadoop. In addition to the query and
connection information, the DB2InputFormat takes a sorted
list of values, which explicitly define the ranges of values
each mapper will process. A split is created for each
consecutive pair of elements in this augmented list.

JaqlSubmit
JaqlSubmit is used to submit a Jaql query from DB2 to a Jaql
server, which is an HTTP (Hypertext Transfer Protocol)
gateway that is able to run Jaql jobs on Hadoop [32].
The JaqlSubmit user-defined function uses three input
parameters: a Jaql script to run, an XML (Extensible Markup
Language) document encoding the parameters to pass into
the Jaql script, and the URL (Uniform Resource Locator)
of the Jaql Server. JaqlSubmit itself does not have
information on where the input data is coming from or where
the output data is written to. It returns an XML document
that contains the list of files containing the results of the
Jaql script.

Ingesting HDFS data into DB2
HDFSRead is a DB2 user-defined table function that is used
to read results generated by a Hadoop job back into the
database. HDFSRead requires an XML handle as parameter,
which can either be generated by a user or is returned by
JaqlSubmit. This XML handle contains the list of files to
read from HDFS and the output schema information of
the data stored in HDFS.
HDFSRead is designed to read many files in parallel, as we

expect to ingest into DB2 the output of a MapReduce job,
where every reducer creates a separate file (or part) under
the same directory.

Exporting DB2 data into Hadoop
The HDFSWrite function uses the HDFS client libraries to
write database data directly into HDFS. It provides an
alternative way to the JDBC-based InputFormats to copy
DB2 data into Hadoop. Recall that the input format generates
a separate SQL query for each mapper. On one hand,
generating many mappers will result in a large number of
SQL queries and a burden on the database, and on the
other hand, generating too few mappers will limit the degree
of parallelism on Hadoop. The HDFSWrite function
circumvents these issues because each database logical
partition directly outputs its data into a separate HDFS file
under the same directory. The HDFSWrite function runs
in parallel on all database partitions without any data
communication between the partitions.

Support for analytics
Many of today’s enterprises collect data at the most detailed
level possible, thereby creating data repositories ranging
from terabytes to petabytes in size. The knowledge buried in

A. BALMIN ET AL. 4 : 7IBM J. RES. & DEV. VOL. 57 NO. 3/4 PAPER 4 MAY/JULY 2013



these enormous datasets is invaluable for understanding
and boosting business performance. The ability to apply
sophisticated statistical analysis methods to this data can
provide a significant competitive edge in the marketplace.
For example, Internet companies such as Amazon or Netflix
provide personalized recommendations of products to their
customers, incorporating information about individual
preferences. These recommendations increase customer
satisfaction and thus play an important role in building,
maintaining, and expanding a loyal customer base. Likewise,
applications such as internet search and ranking, fraud
detection, risk assessment, microtargeting, and ad placement
gain significantly from fine-grained analytics at the level
of individual entities. To this end, we have developed new
techniques for advanced statistical analysis for huge amounts
of data. There are many different analytic techniques, and
there is a significant focus in IBM Research on scalable
analytics, including [10]. Our work is complementary to
this other work.
The workflow for a data analyst comprises multiple

activities. Typically, the analyst first explores the data of
interest, usually via visualization, sampling, and aggregation
of the data into summary statistics. On the basis of this
exploratory analysis, a model is built. The output of the
model is itself exploredVoften through visualization
and also through more formal validation proceduresVto
determine model adequacy. Multiple iterations of model
building and evaluation may be needed before the analyst
is satisfied. The final model is then used to improve
business practices or support decision making. Feedback
from model users can lead to further iterations of the
model-development cycle. During this process, the
traditional data analyst’s indispensable toolkit is a statistical
software package such as R, SPSS, SAS, or MATLAB**.
Each of these packages provides a comprehensive
environment for statistical computation, including a concise
statistical language, well-tested libraries of statistical
algorithms for data exploration and modeling, and
visualization facilities.
However, most statistical software packages, including R,

are designed to target the moderately sized datasets
commonly found in other areas of statistical practice
(e.g., opinion polls). These systems typically operate on a
single server and entirely in main memory; they simply fail
when the data becomes too large. Unfortunately, this means
that data analysts are unable to work with these packages
on massive datasets. Practitioners try to avoid this
shortcoming either by exploiting vertical scalabilityVthat is,
using the most powerful machine availableVor by working
on only subsets or samples of the data. Both approaches
have severe limitations: vertical scalability is inherently
limited and expensive, and sampling methods may lose
important features of individuals and of the tail of the data
distribution. Our work in XAP focuses on overcoming these

limitations. We describe XAP’s two approaches for handling
complex analytics in massive-scale data.

Ricardo
The first approach for handling the analysis is the novel
Ricardo [15] analytics system, which rests on a
decomposition of data-analysis algorithms into parts
executed by the R statistical analysis system and parts
handled by the Hadoop scalable data management system.
Ricardo is named after David Ricardo, a famous economist
of the early nineteenth century who studied conditions under
which mutual trade is advantageous. Ricardo facilitates
Btrading[ between R and Hadoop, with R sending
aggregation-processing queries to Hadoop (written in the
high-level Jaql query language), and Hadoop sending
aggregated data to R for advanced statistical processing or
visualization. Each trading partner performs the tasks that
it does best. The decomposition attempts to minimize
the transfer of data across system boundaries. Ricardo allows
analysts to work on huge datasets from within a popular,
well-supported, and powerful analysis environment. Because
this approach avoids the need to re-implement either
statistical or data management functionality, it provides a
quick path to scalable analytics. Ricardo can be applied to a
wide range of analyses of massive data, including time-series
analysis, regression with outlier detection, principal
component analysis, generalized linear models, clustering,
and so on. Indeed, this work was strongly motivated by the
example provided in Pattern 1 to explore approaches to
integrate the functionality of R and Hadoop.
Ricardo is inspired by the work in [11], which shows that

many deep analytical problems can be decomposed into a
Bsmall-data part[ and a Blarge-data part.[ In Ricardo, the
small-data part is executed in R, and the large-data part
is executed in Hadoop/Jaql. For example, for principal
component analysis, Hadoop/Jaql first constructs the
empirical covariance matrix, and, next, R performs an
eigenvector decomposition of the covariance matrix. A key
requirement for the success of this combined approach is
that the amount of data that must be communicated between
both systems be sufficiently small. Fortunately, this
requirement holds for almost all of the deep analytics
mentioned above.
Ricardo facilitates some key tasks in an analyst’s typical

workflow: data exploration, model building, and model
evaluation, all with respect to a very large dataset. For
illustrative purposes in [15], we use the dataset provided
for the Netflix movie-recommendation competition.
Although the competition itself was based on a subset of just
100 million movie ratings, our experiments on a Hadoop
cluster in the Amazon Elastic Compute Cloud (Amazon
EC2) indicate that Ricardo can scale the functionality of R to
handle the billions of ratings found in practiceVmore than
a terabyte of data in our case.
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Matrix factorizations
The second approach is specialized for the popular family of
matrix-factorization-based analyses and rests on stochastic
gradient descent (SGD), an iterative stochastic optimization
algorithm. Low-rank matrix factorization has received
much attention in recent years, since it is fundamental to a
variety of mining tasks that are increasingly being applied
to massive datasets. Specifically, low-rank matrix
factorizations are effective tools for analyzing Bdyadic
data[ in order to discover and quantify the interactions
between two given entities. Successful applications include
topic detection and keyword search (where the corresponding
entities are documents and terms), news personalization
(users and stories), and recommendation systems (users and
items). In large applications, these problems can involve
matrices with millions of rows (e.g., distinct customers),
millions of columns (e.g., distinct items), and billions
of entries (e.g., transactions between customers and items).
At such massive scales, distributed algorithms for matrix
factorization are essential to achieving reasonable
performance. Low-rank matrix factorization approximations
are employed because, in practice, exact factorization
is generally neither possible nor desired. Low-rank
approximation algorithms attempt to minimize a Bloss
function[ that measures the discrepancy between the original
input matrix and product of the factors returned by the
algorithm.
We started with SGD, an iterative optimization algorithm,

because it has been shown, in a sequential setting, to be
very effective for matrix factorization. Although the generic
SGD algorithm is not embarrassingly parallel and, hence,
cannot directly scale to very large data, we can exploit the
special structure of the factorization problem to obtain a
version of SGD that is fully distributed and scales to
extremely large matrices. We first developed a novel
stratified SGD variant (SSGD) that operates repeatedly on
a single piece (Bstratum[) of the data at a time (unlike SGD,
which operates on all the data at a time). SSGD applies
to general loss-minimization problems in which the loss
function can be expressed as a weighted sum of the local
losses in each stratum (Bstratum losses[). A special version
of the SSGD algorithm is created to obtain a new
matrix-factorization algorithm, called DSGD [33], that can
be fully distributed and run on massive datasets using
Hadoop or other parallel processing frameworks. The
specialized DSGD algorithm, though narrower in scope
than Ricardo, improves upon the performance of Ricardo for
the factorization problem.
SSGD [33] is applicable to general loss-minimization

problems in which the overall loss can be expressed as a
weighted sum of stratum losses. At each iteration, the
algorithm takes a downhill step with respect to one of the
stratum losses, i.e., approximately in the direction of the
negative gradient of the stratum loss. Although each such

direction is Bwrong[ with respect to minimization of the
overall loss, we prove that under appropriate regularity
conditions, SSGD will converge to a good solution for the
overall loss if the sequence of strata is chosen carefully.
The proof rests on stochastic approximation theory and
regenerative process theory.
As mention, we then created a special version of SSGD to

obtain a novel distributed matrix-factorization algorithm,
called DSGD [33]. Specifically, we express the input
matrix as a union of strata, with a particular block-diagonal
shape. For each stratum, the stratum loss is defined as the
loss computed over only the data points in the stratum
(and appropriately scaled). The DSGD algorithm
repeatedly selects a stratum according to the general
SSGD procedure and processes the stratum in a distributed
fashion. Importantly, both matrix and factors are fully
distributed, so that DSGD has low memory requirements
and scales to matrices with millions of rows, millions of
columns, and billions of nonzero elements. When DSGD
is implemented in MapReduce and compared with
state-of-the-art distributed algorithms for matrix
factorization, our experiments demonstrate that DSGD
converges orders of magnitude faster, and has almost
linear scale-out behavior.
Unlike many prior algorithms, DSGD is a generic

algorithm in that it can be used for a variety of different
loss functions. Of particular interest is the class of
factorizations that minimize a Bnonzero loss[ in which a
zero represents missing data and hence should be ignored
when computing loss. A typical motivation for factorization
in this setting is to estimate the missing values, e.g., the
rating that a customer would likely give to a previously
unseen movie.

Conclusion and future plans
In this paper, we described XAP, a powerful large-scale data
processing system that is built upon Hadoop. At the core,
Jaql provides the means to create both analytical and ELT
flows on XAP. It is highly extensible through modules
and provides features to deal with big in situ data with
heterogeneous schemas. Having observed the need for
efficient structured data processing on Hadoop and by
building on our experience with relational databases, we
provide various extensions and optimizations, including
column store, star joins, and collocation. To address the need
for integration with other systems in the enterprise, XAP
provides warehouse connectors as well as bridges to
analytical tools such as R. XAP also comes with analytical
libraries to enable easy development of analytical workflows
on Hadoop. Many of these technologies have been
transferred to the IBM InfoSphere BigInsights product.
In the future, we plan to extend our analytical libraries,
integrate with more tools in the enterprise, and further
improve the efficiency of jobs running on Hadoop.
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